
Three Engines To Solve Verification Constraints of 
Decimal Floating-Point Operation

Amr A. R. Sayed-Ahmed, Hossam A. H. Fahmy
Electronics and Communications Department

Cairo University
Giza, Egypt

Email: hfahmy@stanfordalumni.org 

Mahmoud Y. Hassan
Silminds, Maadi, 11431

Helwan, Egypt

Abstract—Decimal  floating-point  designs  require  a  verification 
process to prove that the design is in compliance with the IEEE 
Standard for Floating-Point Arithmetic (IEEE Std 754-2008).Our 
work represents three engines, the first engine for the verification 
of  decimal  addition-subtraction  operation,  the  second  for  the 
verification of decimal multiplication operation, and the third for 
the  verification of  decimal  fused-multiply-add operation.  Each 
engine  solves  constraints  describing  all  corner  cases  of  the 
operation, and generates test vectors to verify these corner cases 
in the tested design. The paper describes the constraints of each 
operation and the steps of each engine to solve these constraints.

Keywords-component;  Verification;  Decimal  Arithmetic  
Operations; Simulation based coverage models

I. INTRODUCTION 

  Decimal  floating-point  implementations  as  software  or 
hardware  based  designs  have  many  advantages  over  binary 
floating-point  especially  in  the  financial  and  commercial 
applications[1]. As decimal floating-point is newly defined in 
the  IEEE Standard  for  Floating-Point  Arithmetic  (IEEE Std 
754-2008)[2],  new  verification  technologies  are  needed  to 
verify  the  compliance  of  the  decimal floating-point  designs 
with the standard.

Our  decimal  floating-point  verification  method  is  a 
simulation  method  based  on  coverage  models  to  cover  all 
corner cases of a certain decimal floating-point operation. The 
method guarantees  that  the simulation covers  the interesting 
cases of the operation. On other hand the random simulation 
does not guarantee a good coverage due to the large space of 
the inputs where for n operation's inputs of 16 digits precision, 
the  space  is  on  the  order  of 10n∗16  and  for  34  digits  it 
becomes 10n∗34 .

The coverage model consists of tasks, each task represents 
the constraints of a certain case. These constraints are solved 
by an engine that generates a test vector to verify the case in a 
decimal floating-point design using simulation. The coverage 
model is a set of related tasks targeting a certain floating point 
area or features of the floating-point operation, and it is defined 
using a Cartesian product  between two lists or  among more 
lists of constraints with ignoring the impossible combinations.

The Addition-Subtraction, Multiplication, and Fused- Multiply-
Add (FMA) engines are software tools to solve constraints on 
inputs,  output,  and specific  features  related to the operation. 
Each engine uses one algorithm to solve these constraints and 

another one to solve the special  inputs constraints like Zero, 
sNaN, qNaN, and Infinity. These algorithms allow the engines 
to  solve  all  constraints  analytically  including  simultaneous 
constraints on inputs and output.

Formal  verification  methods[3,4]  and  simulation 
verification  methods  based  on  coverage  models[5,6,7]  have 
been  developed  to  verify  binary  floating-point  hardware 
designs.  The  verification  of  decimal  floating-point  using 
simulation method based on coverage models[8] is developed 
but  still  the  used  algorithms  do  not  guarantee  to  find  the 
solution  of  certain  cases.  They  can  not  solve  simultaneous 
constraints on inputs and output, and can not solve constraints 
on  an  unbounded  intermediate  result.  Also  there  are  no 
algorithms to solve constraints of FMA, square root, and power 
function.

Our  engines  use  algorithms  to  solve  simultaneous 
constraints  on  inputs  and  output  and  constraints  on  the 
unbounded  intermediate  result,  and  can  find  the  solution  of 
most cases if the solution  exits.

The three engines are used for the verification of SilMinds 
decimal floating-point hardware implementations[1,9,10], and 
research decimal floating-point designs at cairo university[11]. 
The generated test vectors have proven the efficiency of the 
engines in discovering bugs.

II.MAIN DEFINITIONS

The standard defines two representations to decimal floating-
point number: a normalized format and a unnormalized format. 
The  engines  represent  decimal  floating-point  number  in  the 
unnormalized  format.  So  that  the  number  is  defined  as 
−1s

dP−1 dP−2 dP−3 ...d010q where s is  the  sign,
dP−1 dP−2 dP−3 ...d0 is  the  significand  where 
d i={0,1,2,3,4,5,6,7,8,9 }, and q is  the  exponent  where
qmin≤q≤qmax , qmax=emax− p1 , qmin=emin−p1 . The 

precision p is  the  maximum  number  of  digits  in  the 
significand. emax is  the  maximum  exponent,  and

emin=1−emax is the minimum exponent [2].

The intermediate result is the result of the operation when 
the precision of the significand or the exponent is unbounded; 
i.e. the result before rounding or normalizing processes.

The fused-multiply-add (FMA) operation is a multiplication 
operation followed by an  addition-subtraction operation. The 
addition  intermediate  result  is  the  result  of  the  addition-

The project “promoting Egypt as the First Decimal Arithmetic Intellectual Property Cores Provider for Financial Applications in the World” (grant number  
C2/S1/163)  is funded by the RDI programme through the EU Egypt Innovation Fund (EEIF). The RDI programme is a program of  the Egyptian Ministry of  
Higher Education and Scientific Research funded by the European Union.

mailto:hfahmy@stanfordalumni.org


subtraction operation when the precision of the significand or 
the exponent is unbounded, and the multiplication intermediate 
result  is  the  result  of  the  multiplication  operation  when  the 
precision of the significand or the exponent is unbounded.

The  mask  of p digits  significand  consists  of  two 
numbers:  the  minimum  absolute  value  of  significand

dN P−1
dNP−2

...dN 1
dN 0

and  the  maximum  absolute  value 
dM P−1

dM P−2
... dM 1

dM 0
 where each digit d i is chosen from the 

interval [dN i
, dMi

], N for  minimum,  and M for 
maximum.

The Rounding mode is one from five modes defined in the 
standard  :  Round  ties  to  even,  Round  ties  to  away,  Round 
toward  zero,  Round  toward  positive,  and  Round  toward 
negative.

III.ADDITION-SUBTRACTION ENGINE

   The addition-subtraction task is generated from the following 
constraints: (1) mask on significand of the first input that is set 
as the smaller exponent input. The mask is represented using 
two  numbers  with same signs denoted by  mx N , mxM , (2) 
mask on significand of the second input that is set as the larger 
exponent input.  The mask is represented using two numbers 
with  same  signs   denoted  by  my N , myM , (3)  mask  on 
significand of the intermediate result is represented using two 
numbers  with  same  or  different  signs   denoted  by

mzN , mzM . Each  number  consists  of 2p1 digits,
p1 digits before the fractional point and p digits after 

it, (4) right shift value of the smaller exponent input str , (5) 
The  intermediate  result  exponent  Iexp at  which  the 
addition_subtraction  operation  occurs,  and  (6)  the  rounding 
mode rm .

   The  engine  chooses  randomly  the  value  of  the  previous 
constraints that are not specified by the task. We give it  the 
ability  to  choose  from  all  the  possible  values  of  a  certain 
constraint, which give the power to the generated test vectors in 
discovering bugs

The  engine  determines  the  number  of  digits  of  the  first 
input  significand px from  the  interval 
[no of digits of mx N ,no of digits of mxM ] , and number  of  digits 

of  the  second  input  significand p y  from  the  interval 
[no of digits of my N ,no of digits of myM ] .

The engine shifts to left both my N and myM , which are 
the  significand  mask  of  the  larger  exponent  input,  with  the 
value  of sl y , and  shifts  to  right  both mx n and mxM ,
which are the significand mask of the smaller exponent input, 
with  the  value  of sr x . It  chooses  randomly  the  right-shift 
value sr x either  from  the  interval [1, p] or  from  the 
interval [p1, qmax−qmin ] according to the value of str.

If sr x is  equal zero, it will choose randomly left-shift value
sl y from  the  interval [0, p−p y] , otherwise  if sr x is 

larger than zero, sl y is  equal p−py .  

     After the shifting process, the engine determines the range 
of  each  digit  of  the  intermediate  result  significand.  It 
determines  the range of the total value of intermediate result 

significand  as:
zN=max mxNmy N ,mzN  , zM=min mxMmyM , mzM . Then, it 

limits the interval of each digit, from the p  digits after the 
point as :

  zN [ i]=maxmxN [i ]myN [i ],mzN [i]: −1≤i≤−p .  

  zM [i]=min mxM [i ]myM[i ], mzM[i ] : −1≤i≤−p .  

   Depending on the significand mask of the intermediate result, 
the  engine  chooses  from  the  interval [ z N , z M ]  the 
intermediate result significand Szinter . However,  it needs first 
to  propagate   the borrows from the most  digits  to  the least 
digits of  z N or zM  to make zM [i] larger than or equal

zN [ i] for  all i using 
zM [i1]= zM [i1]−1 , z M [i]= zM [i]10, where  the  sign  of
Sz inter is  positive,  otherwise,  when  the  sign  of  Sz inter is 

negative, it uses zN [ i1 ]= zN [i1 ]1 , z N [i]=z N [i]−10 .  

     At no constraint on the digit, the engine chooses the digit 
from  its  range zN [ i]≤Sz intr[i ]≤z M[ i] p≤i≤−p.  
If mz N [ i] is  equal  to mz M [i] (i.e.  there is  a  constraint  on 
the  digit), Sz inter [i] is  equal mzN [i] , or Sz inter [i] is  equal

mzN [i]10 , such that  the value of  Sz inter [i]  is between 
the range of  the interval [ zN [i], z M[ i]], then  it calculates the 

total value using  Szinter=∑
i=−P

i=P

Sz inter[ i]∗10i .  

   The  engine  must  get  first  the  significand  of  the  larger 
exponent  input Sy from  the  interval [ y N , ym] , where 

y N=max myN , Szinter−mxM  , yM=min my M ,Szinter−mxN  .  It 
uses the same method, used to find  Szinter ,  again to find 

Sy depending  on  the  mask  of  significand  of  the  larger 
exponent  input  and it  calculates  total  value  using

Sy= ∑
i=0

i=P−1

Sy [i ]∗10 i , and  it  finds  easily  the  second  input 

significand Sx=Sz inter−Sy .  

   The  intermediate  result  exponent Ezinter either  equals
Iexp  or is calculated using: qminsrx≤Ez inter≤qmax−sly . It 

calculates  the  smaller  exponent  Ex=Ez inter−sr x and  the 
larger exponent  Ey=Ezintersl y . The engine shifts  Sx to 
the  left  with  value  of sr x , and shifts  to  right Sy with a 
value of sl y .                                                                   

    The intermediate result may have cancellation digits when
sr x is  larger  than  zero,  in  that  case  the  engine  shifts 
Szinter  to  left  and  decreases  Ezinter with  a  value
scn=minsr x, p−no of digits before point  . The  intermediate 

result also may have a carry digit, in that case the engine shifts
Szinter one digit to the right and increases Ezinter by one.   

The engine rounds the intermediate result according to the 
standard. The rounding process may generate a carry,  which 
forces  the  engine  to  shift Szinter one digit  to  the  right  and 
increase Ezinter by one. If Ezinter is smaller than  or equals 

qmax ,  Sz  equals Szinter  and Ez  equals Ezinter ,  
otherwise it is an overflow case, its result is according to the 
rounding mode.



IV.MULTIPLICATION ENGINE

   The  multiplication  task  is  generated  from  the  following 
constraints:  (1)  mask  on  significand  of  the  first  input  is 
represented  using  two  numbers  with  same  signs mxN and

mx M , (2)  mask  on  significand  of  the  second  input  is 
represented  using  two  numbers  with  same  signs my N and

my M , (3) mask on significand of the intermediate result is 
represented  using two numbers  with same signs denoted  by 

mzN and mzM . Each number consists of 2p digits,  (4) 
the  exponent  of  the  first  input Xexp , (5)  the  intermediate 
result  exponent Iexp which  is  the  sum  of  the  two  inputs 
exponents, and (6) the rounding mode rm.

     The engine also chooses randomly the value of the previous 
constraints that are not specified by the task.

     In the first, the engine determines  value of the  maximum 
number of digits of the first input p x and maximum number 
of digits of the second input p y using :    

min pz−no of digits of myM , p ≤ px≤noof digits of mxM .      (1) 

                                p y=p z−p x .                                    (2) 

Where p z is number of digits of the intermediate result. The 
previous two equations solve the problem of the leading zero 
digits in the intermediate result significand. 

The  engine   solves  the  constraints  and  generates  the 
significands  of Szinter , Sx and Sy , by  solving  the 
nonlinear equations that generated from the multiplication of 

Sx and Sy. Fig.1  shows  a  simplified  multiplication 
example with p=8 , from it we see the following facts. The 

2p−1 digits  of  Szinter lead  to  2p−1 non  linear 
equations   in 2p unknowns  (digits  of  Sx and  digits  of 

Sy ).The sum of digits in each column in addition to any 
carries from the previous columns lead to one equation. 

Figure 1. The products of the multiplication operation at precision equal eight.

  The  engine  uses  two  methods  to  solve  the  non-linear 
equations, It chooses the appropriate method according to the 
constraints  of  the  intermediate  result.  If  the  intermediate 
constraints are on the least p digits, the engine solves the 

significands  constraints  using  the  first p equations  of  the 
operation:

x0∗y0− z0=c0

x1∗y0x0∗y1c0 /10− z1=c1

⋮
xP−1∗y0xP−2∗y1⋯x1∗yP−2x0∗yP−1c p/10−z P−1=c p−1

But if the intermediate constraints are on the most p digits 
and  some  or  all  the  least  digits,  the  engine  solves  the 
significands constraints  using the last p equations :

z 2p−2−x p−1∗y p−1=b2p−2

z 2p−310∗b2p−2−x p−1∗y p−2−x p−2∗y p−1=b2p−3

⋮

z p−110∗b p−x p−1∗y0−x p−2∗y1−⋯−x1∗y p−2−x0∗y p−1=b p−1

     In the two methods, the engine achieves  the constraint of 
each  digit Sx [i] , Sy [i ], or Szinter [i ] by  choosing  the 
digit  from its  interval [mx N [i ],mx M [i]] , [my N [ i], my M[i ]] ,

or [mzN [i], mzM[ i]].

    In the first method, the engine  chooses Sx [0] , Sy [0] ,

and Szinter [0 ] , from their intervals, such that they achieve the 
equation:    

                          
Sx [0]∗Sy [0]−Sz [0]inter=c [0],

c [0] Mod10=0.                    (3) 

It chooses the remain digits, digit by digit, for  all i in the 
interval [1, p−1] , such  that  Sx [i] ,  Sy [i ],  and

Szinter [i ] achieve the equation:

              
∑
j=0

j=i

Sx [i− j ]∗Sy [ j]c [i−1]/10−Szinter [i ]=c[ i]

c [i]mod 10=0
       (4) 

Finally, after getting all digits of Sx and Sy , it calculates 
the  intermediate  result  significand Szinter=Sx∗Sy , to  get  all 
digits  of Szinter . The  engine  repeats  the  method  again,  if 
Equation.4 is not achieved in one of the iterations. 

 In the second method, the engine chooses first,  the five 
digits Sx [p−1] , Sy [p−1] , Szinter [2p−1 ], Szinter [2p−2 ] , and

Szinter [2p−3 ] from their intervals to achieve the equations:

   
b [2p−2]=

Szinter[2p−2]10∗Szinter [2p−1]−Sy [p−1 ]∗Sx [ p−1]
     (5)

  

0≤10∗b [2p−2 ]Szinter [2p−3]

≤9∗Sx [p−1]9∗Sy [p−1 ]28      (6)

Where  the  term  28=3∗9∗9/104∗9∗9/1005∗9∗9 /1000
represents the maximum carry from the next equations.

    Then,  the  engine  chooses  in  each  iteration  the  digits
Sx [i] , Sy [i ], Szinter [ip−1 ], and Szinter [ip−2]  

from their intervals, for all  i in the interval  [p−2,0 ] , to 
achieve the equations:  

x7 x6 x5 x4 x3 x2 x1 x0

y7 y6 y5 y4 y3 y 2 y1 y0

x7 y0 x6 y0 x5 y0 x 4 y0 x3 y0 x2 y0 x1 y0 x0 y0

x7 y1 x6 y1 x5 y1 x4 y1 x3 y1 x2 y1 x1 y1 x0 y1

x7 y2 x6 y2 x5 y2 x4 y2 x3 y2 x2 y2 x1 y2 x0 y2

x7 y3 x6 y3 x5 y3 x4 y3 x3 y3 x2 y3 x1 y3 x0 y3

x7 y4 x6 y4 x5 y4 x4 y4 x3 y 4 x2 y4 x1 y4 x0 y4

x7 y5 x6 y5 x5 y5 x4 y5 x3 y5 x2 y5 x1 y5 x0 y5

x7 y6 x6 y6 x5 y6 x4 y6 x3 y6 x2 y6 x1 y6 x0 y6

x7 y7 x6 y7 x5 y7 x4 y7 x3 y7 x2 y7 x1 y7 x0 y7

z14 z13 z12 z11 z10 z 9 z8 z 7 z6 z5 z4 z3 z 2 z1 z 0



                                                  

b[ ip−1]=Sz inter [ i p−1]10∗b [ip]− ∑
j=i

j=p−1

Sx[ j ]∗Sy [ i− j p−1]

                                                                                       (7)  
0≤10∗b [ip−1 ]Szinter[ ip−2]− ∑

j=i−1
j ≠−1

j=p−2

Sx[ j ]∗Sy [i− jp−2]

≤9∗Sx [p−1]9∗Sy[ p−1 ]28 .

where i≠0                                                                      (8)

0≤10∗b [ip−1 ]Szinter[ ip−2]− ∑
j=0

j=p−2

Sx[ j ]∗Sy [i− jp−2]

≤28

where i=0.                                                                    (9)

After getting all digits of Sx and Sy , it calculates the 
intermediate  result  significand Sz inter=Sx∗Sy . The  engine 
repeats the method more than one time in two cases,  first if 
Equation.7  or  Equation.8  is  not  achieved,  second  if 
Equation.10   is  not  achieved.  The  engine  checks  the 
achievement  of   the  constraints  in  the  least p  digits  of

Sz inter , and  gets  new  intermediate  result  significand
Szinter , by  changing  the  digits  that  do  not  achieve  their 

constraints  to  values  that  achieve  the  constraints.  Such  that 
Szinter   achieves also equation.10.

∣Szinter− Sz inter∣mod Sx≤maxerror , ∨

∣Szinter− Sz inter∣mod Sy≤maxerror
  (10)

If  Equation.10  is  achieved,  it  calculates  the  new  values  of
Sx or Sy using :

   Sx=Sx
Szinter− Sz inter−Szinter− Sz intermod Sy

Sy         (11) 

         Sy=Sy
Szinter− Sz inter−Szinter− Sz inter mod Sx

Sx         (12) 

Finally it calculates the new value of the intermediate result 
using  Szinter=Sx∗Sy . Such  that  it  has  an  error  less  than

maxerror  in the least digits, but still the value of Szinter is 
between the range of the interval [mzN ,mz M ] .

The  engine  chooses  the  intermediate  result  exponent
Ezinter either from the interval [qmin, qmax ] , or Ezinter is 

equal Iexp. Then, it chooses the first input exponent Ex ,
either  from  the  interval 
[maxqmin, Ez inter−qmax , minqmax , Ezinter−qmin] , or Ex  

is equal Xexp , and it calculates the second input exponent 
Ey=Ezinter−Ex .  

The engine shifts the intermediate result significand to right 
with a value srz=max 0, p z− p , and the intermediate result 
exponent is calculated Ez=Ez intersrz .  

At clamping, where  Ezqmax ∧ Ezpz≤qmaxp ,  the 
engine shifts to left Szinter with a value is equal Ez−qmax

and equals Ez with qmax .

At  special  case  of  under  flow,  where Ezqmin and
Ezp z≥qmin , it shifts to right Sz inter with a value is equal
qmin−Ez and equals Ez with qmin .

The engine rounds the intermediate result according to the 
standard. The rounding process may generate a carry to force 
the engine to shift Sz inter one digit to right and increase Ez

by one. Finally if Ez is smaller than or equal qmax , and 
larger  than  or  equal qmin , Sz will  equal Sz inter ,
otherwise it is an overflow case or an underflow case, its result 
is according to the rounding mode.

V.FUSED MULTIPLY ADD ENGINE

 The fused-multiply-add(FMA) task is generated from the 
following constraints: (1) mask on significand of the first input, 
is represented using two numbers with the same signs mxN  
and mx M , (2)  mask on significand of  the second input,  is 
represented using two numbers with the same signs my N and

my M , (3) mask  on  significand  of  the  third  input  is 
represented using two numbers with the same signs mbN and

mbM , (4)  mask  on  significand  of  the  multiplication 
intermediate result is represented using two numbers with the 
same signs denoted by mzN , mzM . Each number consists of

2p digits,  (5)  mask  on  significand  of  the  addition 
intermediate result is represented using two numbers with same 
or different signs are denoted by  mc N  and  mc M . Each 
number  consists  of 2p1 digits, p1 digits  before  the 
fractional point and p digits after it, (6) the exponent of the 
first  multiplication  input (7)  the  multiplication  intermediate 
result  exponent  which  is  the  sum  of  the  first  two  inputs 
exponents, (8)  identifier  number sid  to  determine  the 
smaller  exponent  input  of  the  addition  operation(i.e  the 
exponent of third input or the exponent of the multiplication 
intermediate  result),  (9)  right  shift  value  of  the  smaller 
exponent addition input,  (10) the addition intermediate result 
exponent at  which the addition_subtraction operation occurs, 
(11) the rounding mode.

     The engine also chooses randomly the value of the previous 
constraints that are not specified by the task.

The  FMA  Engine  does  similar  steps  like  the  addition 
-subtraction engine to solve the significand constraints on the 
third  input,  the  multiplication  intermediate  result,  and  the 
addition  intermediate  result.  It  generates  the  third  input 
significand Sb , an  estimation  to  the  multiplication 
intermediate  result  significand Szinter , and  an  estimation  to 
the addition intermediate result Sc inter (the final intermediate 
result), after determining  the smaller exponent input according 
to the value of sid.  

The engine shifts Szinter to left with a value msr to be 
in the format of 2 p digits, then does similar steps like the 
multiplication  engine  to  generate  the  first  two  significands 
inputs of the operation Sx , Sy . Therefore  it  does the FMA 
operation Sc inter=Sx∗SySb  to  get  the  correct  final 
intermediate result of the operation.

The engine solves the exponents constraints depending on 
the right shift  value sr , the left  shift  value sl , the value 



msr , and the value of sid. Where  sid=0, if  the third 
input is the smaller exponent input of the addition operation, 
and sid=1, if  the  multiplication  intermediate  result  is  the 
smaller exponent input of the addition operation. The engine 
chooses  the  result  exponent Ecinter from  the  interval

[max  srmsr ∗sid−2∗qmin ,sr∗1−sid −qmin  , qmax−msr∗sid ] .
It  calculates  the  third  input  exponent

Eb=Ec inter−sr∗1−siz sl∗siz , and  the  multiplication 
intermediate  result Ezinter=Ec inter−msr−sr∗sizsl∗1−siz ,

then,  it  chooses  Ex from  the  interval 
[max qmin , Ezinter−qmax ,minqmax ,Ez inter−qmin ]  and 

calculates Ey=Ez inter−Ex.

VI.CONCLUSION

We have developed the method by Aharoni[8] to generate 
test cases to verify all corner cases of decimal floating-point 
operations.  The engines  solve the  constraints  to  describe  all 
corner  cases  of  the  operation,  which  include  simultaneous 
constraints  on  inputs  and  output,  and  constraints  on  the 
unbounded intermediate result. 

The three engines Addition-Subtraction, Multiplication, and 
FMA generated test vectors that proved the efficiency of the 
engines in solving the chosen constraints. 

The  three  engines  do  not  use  the  previous  explained 
algorithms in solving special  inputs like Zero, sNaN, qNaN, 
and Infinity. The engines solve these inputs and generate the 
output typically using the standard rules.

There  is  a  need  to  develop  new  engines  to  solve  the 
simultaneous constraints and the unbounded intermediate result 
constraints of Division and Square root operations which are 
specified by the standard but have not been generated yet.

REFERENCES

[1]  H. A. H. Fahmy, R. Raafat, A. M. Abdel-Majeed, R. Samy, T. ElDeeb,  
Y. Farouk, “Energy and Delay improvement via Decimal Floating Point 
Units,” in Proceeding of 19th IEEE Symposium on Computer Arithmetic, 
2009.

[2]  “IEEE standard for floating-point  arithmetic,” New York,  NY,  Aug. 
2008, (IEEE Std 754-2008).

[3]  E. M. Clarke, S. M. Germanand, X. Zhao,“Verifying the SRT Division 
Algorithm Using  Theorem Proving  Techniques,”  Formal  Methods  in 
System Design, vol. 14, pp. 7-44, 1999. 

[4]  O. Leary, X. Zhao, R. Gerth, C. Johan, H. Seger, “Formally Verifying 
IEEE  Compliance  of  Floating-Point  Hardware,”  Intel  Technology 
Journal, 1999. 

[5]  M.  Aharoni,  S.  Asaf,  R.  Maharik,  I.  Nehama,  I.  Nikulshin,  A.  Ziv, 
“Solving Constraints on the Invisible Bits of the Intermediate Result for 
Floating-Point Verification,” in Proceeding of 17th IEEE Symposium on 
Computer Arithmetic,2006. 

[6]  A. Ziv, and L. Fournier, “Test Generation for the Binary Floating Point 
Add  Operation  With  Mask-Mask-Mask  Constraints,”  Theoretical 
Computer Science, Vol. 291/2, pp. 183-201,2003.

[7]  A. Ziv, M. Aharoni, and S. Asaf, “Solving Range Constraints for Binary 
Floating-Point Instructions,” in Proceeding of 16th IEEE Symposium on 
Computer Arithmetic, 2003.

[8] M.  Aharoni,  R.  Maharik,  A.  Ziv,  “Solving  Constraints  on  the 
Intermediate Result  of Decimal Floating-Point,”  in Proceeding of 18 th 

IEEE Symposium on Computer Arithmetic, 2007.

[9]  R. Raafat, A. M. Abdel-Majeed, R. Samy, T. ElDeeb, Y. Farouk, M. 
Elkhouly, and H. A. H. Fahmy, “A decimal fully parallel and pipelined 
floating  point  multiplier,”  in  Forty-Second  Asilomar  Conference  on 
Signals,  Systems,  and  Computers,  Asilomar,  California,  USA,  Oct. 
2008.

[10] R. Samy, H. A. H. Fahmy, R. Raafat, A. Mohamed, T. ElDeeb, and Y. 
Farouk, “A Decimal  Floating-Point  Fused-Multiply-Add Unit,”  in  the 
53rd  International  Midwest  Symposium  on  Circuits  and  Systems 
(MWSCAS), 2010.

[11] K.  Yehia,   H.  A.  H.  Fahmy,  M.  Hassan.  “A  Redundant  Decimal 
Floating-Point Adder,”  in Forty-Four Asilomar Conference on Signals, 
Systems, and Computers, Asilomar, California, USA, 2010.

[12] M. Aharoni, S. A. L. Fournier, A. Koifman, and R. Nagel, “FPgen - A 
Test Generation Framework for Data path Floating-Point Verification,” 
in Proceedings of IEEE International High Level Design Validation and 
Test Workshop, 2003.


	I.  Introduction 
	II. Main Definitions
	III. Addition-Subtraction Engine
	IV. Multiplication Engine
	V. Fused Multiply Add Engine
	VI. Conclusion

