

IP Core Product Data Sheet DFP Newton-Raphson Divider Units NRDecDiv64/128

NRDecDiv64 and NRDecDiv128 IP core units are novel DFP Divider designs, offered in 64-bit and 128-bit versions. The unit computes the Quotient of two vector Operands. Inputs are encoded in Decimal Interchange Format.

The Divider is based on the Newton-Raphson iterative method. It computes the final quotient in 2 iterations for the 64-bit version and in 3 iterations for the 128-bit version. The product is fully compliant with the IEEE 754-2008 Standard.

Key Features

- ⇒ Full IEEE 754-2008 compliance
- ⇒ Decimal128 (34 decimal digits) format support
- ⇒ Decimal Interchange format with Densely Packed Decimal (DPD) encoding support
- ⇒ Seven rounding modes support
- \Rightarrow Result is available at every clock cycle
- ⇒ Overflow, Underflow, Invalid, and Inexact operation flags
- ⇒ Tested with over 500,000 test cases compliant with IEEE 754-2008 format
- \Rightarrow Full DFP accuracy and precision support
- ⇒ Fully synthesizable with no internal tri-states

Applications

- ⇒ DFPA units for next generation processors
- ⇒ DFPA on-chip co-processors
- ⇒ DFPA accelerator boards

IP Deliverable

Deliverable depends on the type of licensing agreement and the negotiated business model. The following items could be included:

- ⇒ Source code:
 - VHDL source code
 - VERILOG source code
 - Encrypted or plain text EDIF netlist
- ⇒ FPGA code versions, optimized for either speed or area
- ⇒ VHDL & VERILOG test bench environments
- ⇒ Full test suites compliant with IEEE 754-2008 standard.
- ⇒ Technical documentation
- ⇒ HDL core specification
- \Rightarrow Synthesis scripts
- \Rightarrow IP Core implementation support

Performance Data

The table below summarizes gate-level synthesized performance data in TSMC 90 nm, for sample combinational designs. More detailed performance data can be found in the product technical documentation.

Design	Cycle Delay		Nr. of	<u>Area</u>	
	nS	FO4	Cycles	μm²	NAND2
NRDecDiv64-comb	2.62	58.22	11	425,198.1	150,652
NRDecDiv128-comb	3.20	71.11	13	880,243.1	311,878

Configurations

NRDecDiv64/128 can be combined with other SilMinds IP core units to comprise arbitrary decimal coprocessor architectures. Deployment is made easy and reliable through a compact core size, parameterized RTL, and flexible test benches.

Product Verification

This product has been verified using an innovative and efficient constraint driven test vector generation tool. The test vectors cover all valid cases in conformance with the IEEE 754-2008 standard.

Symbol & Block Diagram

Divider Unit Functions

Formulation & Detection

- Decodes input operands (Dividend and Divisor) using IEEE 754-2008 format to produce the sign bit, significand, and exponent
- Performs special input detection (infinity or NaN)
- Performs significand normalization

Master Control

Generates the result exponent (computed to be the preferred exponent as defined by the IEEE 754-2008), the output flags, and a number of control signals

Right Shifter

Removes excess trailing zeroes

Fixed Point Divider

Performs decimal fixed point division, based on the Newton-Raphson iterative method, employing a novel parallel decimal fixed multiplier to reduce

Rounder & Corrector

Performs quotient rounding to fit in the required precision

Output Formulation

- Encodes the resultant significand in DPD format
- Formulates the special values (infinity or NaN) to comply with the IEEE 754-2008 standard
- Sets the appropriate flags