
1

Decimal Floating Point for future processors
Hossam A. H. Fahmy

Electronics and Communications Department, Cairo University, Egypt
Email: hfahmy@stanfordalumni.org

Tarek ElDeeb, Mahmoud Yousef Hassan, Yasmin Farouk, Ramy Raafat Eissa
SilMinds, LLC

Email: tarek.eldeeb@silminds.com

F

Abstract—Many new designs for Decimal Floating Point (DFP) hard-
ware units have been proposed in the last few years. To date, only
the IBM POWER6 and POWER7 processors include internal units for
decimal floating point processing. We have designed and tested several
DFP units including an adder, multiplier, divider, square root, and fused-
multiply-add compliant with the IEEE 754-2008 standard. This paper
presents the results of using our units as part of a vector co-processor
and the anticipated gains once the units are moved on chip with the
main processor.

1 WHY DECIMAL HARDWARE?
Ten is the natural number base or radix for humans
resulting in a decimal number system while a binary
system is natural to computers.

In his seminal paper [1] in 1959, Buchholz concludes
that “a combination of binary and decimal arithmetic
in a single computer provides a high-performance tool
for many diverse applications. It may be noted that
the conclusion might not be the same for computers
with a restricted range of functions or with performance
goals limited in the interest of economy; the difference
between binary and decimal operation might well be
considered too small to justify incorporating both. The
conclusion does appear valid for high-performance com-
puters regardless of whether they are aimed primarily at
scientific computing, business data processing, or real-
time control.”

Due to the limited capacities of the first integrated
circuits in the 1960s and later years, most machines
adopted the use of dedicated circuits for binary numbers
and dropped decimal numbers. With the much higher
capabilities of current processors and the large increase
in financial and human oriented applications over the
Internet, decimal is regaining its due place. The largest
change in the recent revision of the IEEE standard for
floating point arithmetic [2] is the introduction of the
decimal floating point formats and the associated oper-
ations.

Work partially completed under grant number C2/S1/163 from the Research,
Development, and Innovation program (RDI) of the Egyptian Ministry of
Higher Education and Scientific Research funded by the European Union.

Simple decimal fractions such as 1/10 which might
represent a tax amount or a sales discount yield an
infinitely recurring number if converted to a binary
representation. Hence, a binary number system with a
finite number of bits cannot accurately represent such
fractions. When an approximated representation is used
in a series of computations, the final result may devi-
ate from the correct result expected by a human and
required by the law [3], [4]. One study [5] shows that in
a large billing application such an error may be up to
$5 million per year.

Banking, billing, and other financial applications use
decimal extensively. Such applications may rely on a
low-level decimal software library or use dedicated
hardware circuits to perform the basic decimal arithmetic
operations. Two software libraries were proposed to im-
plement the decimal formats of the new IEEE standard:
one using the densely packed decimal encoding [6] and
the other using the binary encoded decimal format [7]
which is widely known as the Binary Integer Decimal
(BID) encoding. Hardware designs were also proposed
for DFP separate operations [8]–[12] , as well as complete
processors [13].

The goal of this paper is to present designs that
produce the correct results according to the standard
efficiently. By efficiently we mean in less time and with
less energy.

A benchmarking study [14] estimates that many fi-
nancial applications spend over 75% of their execution
time in Decimal Floating Point (DFP) functions. For this
class of applications, the speedup resulting from the
use of a fast hardware implementation versus a pure
software implementation ranges from a factor of 5.3 to
a factor of 31.2 depending on the specific application
running [14].

The following section explains our own designs for the
DFP units and compares them to other implementations.
Section 3 presents the experimental results of using our
units within our DFP vector co-processor for financial
applications. Finally, section 4 presents the conclusions.

2

2 DFP HARDWARE UNITS

Our goal is to provide functionally correct, standard
compliant, high performance hardware units [15] for the
major decimal arithmetic operations listed in the stan-
dard, namely: addition/subtraction, multiplication [9],
fused multiply-add (FMA) [16], division, and square
root. Our designs implement all these operations for the
decimal encoded decimal64 and decimal128 formats of
the standard. In this paper, we just briefly describe the
adder and multiplier units since they are the ones used
in the co-processor explained later.

All the units support seven rounding directions. Four
of these are directed roundings: toward zero (RZ), away
from zero (RA), toward plus infinity (RP), and toward
minus infinity (RM). While the other three round to near-
est but handle the tie case differently: ties to even (RNE),
ties away from zero (RNA), and ties to zero (RNZ). The
standard mandates the provision of RZ, RP, RM, RNE,
RNA in any compliant decimal implementation. The
other two (RA and RNZ) are used in some applications
and defined in the BigDecimal library [17].

All units were originally designed using general ASIC
coding style. Tailored versions of the cores were devel-
oped targeting Altera Stratix FPGAs and Xilinx Virtex
FPGAs. The tailored versions efficiently utilize the FPGA
cells.

The proof of correct functionality and full standard
compliance of floating point units is a very complicated
task [18]. To get around this and still provide robust
designs, companies accumulated over the years large
bodies of test cases to check the critical conditions.
Recently, designers used formal verification methods [19]
as an alternative approach to ensure the quality and
correctness of their units. For the case of DFP, the ver-
ification team of IBM developed a software engine [20]
that generates test cases based on a description of the
constraints in the standard. Currently, the IBM team does
not publish the complete test suite. Cairo University
in cooperation with SilMinds developed an alternative
engine. This verification work [21] included a DFP set
of models compliant with the IEEE 754-2008 standard
and a model-based test case generator with the same
format as IBM’s. We built a free tool [22] to parse the test
cases generated from either Cairo University or IBM to
produce output files with test vectors suitable for direct
use with hardware simulators. Our tool also produces
pseudo-random test vectors with a variable number of
leading zeros. Each of our designs is simulated using
the test vectors from IBM, Cairo University, as well as
a large number of random cases to check its correct
functionality in all the seven rounding directions and the
correct generation of the required flags for exceptional
cases according to the standard.

2.1 Decimal adder
After the correct alignments of the significands based on
the exponents and leading zeros, the core of all our DFP

adders uses a new fast decimal adder based on a Kogge-
Stone prefix tree. In this adder, both the addend and
augend are converted to regular Binary Coded Decimal
(BCD) and excess-3 encodings simultaneously. The sum
of two BCD digits requires a correction only if it exceeds
nine. This comparison with nine delays the generation of
the corresponding carry signal. In excess-3, the sum digit
requires a correction (to subtract 3) if it is nine or less and
a different correction (to add 3) if it is greater than nine.
However, the correct carry signal is generated quickly.
Our adder combines the advantages of both encodings.
It uses the excess-3 encoding to get the propagate and
generate signals that are fed into the Kogge-Stone tree to
quickly get the carry signal corresponding to each digit
position in the significand. In parallel, it produces the
sum and incremented sum of the BCD digits in each
position. The carry signals then select the correct result
for each position.

The DFP Adder is modified to incorporate other
standard-defined functions; compare, minNumber,
maxNumer, toIntegral, quantize and isQuantum.

Furthermore and in contrast to the previous de-
signs [8], our DFP adders generate the sticky bit in
parallel with the alignment shifter then use that bit in
an injection based rounding [8].

2.2 Decimal multiplier

Our multiplier [9] contains two main paths: significand
path to generate the product’s significand, and the ex-
ponent path to generate the product’s exponent and
the corresponding flags. The significand path relies on
a fully parallel decimal multiplier [23] to generate the
partial products in parallel and reduce them to two
vectors (sum and carry) using a carry save addition tree.

These two vectors are added using our new fast
decimal carry propagation adder. The exponents of both
operands and the count of leading zeros determine the
required amount to shift the result’s significand into its
correct place then it is rounded.

3 DFP VECTOR CO-PROCESSOR EXPERI-
MENT

Effectiveness and efficiency of any new technology
should be proved. After testing the correctness of our
work its efficiency became our focus. For this purpose,
a complete testing platform is developed to verify and
evaluate our decimal cores.

We synthesized three parallel units of 5-stages
pipelined DFP Multiplier, five parallel units of 3-stages
pipelined DFP Adder (with multi-function unit) on the
Xilinx FPGA. On the FPGA, our hardware connects to
a main processor as a slave memory mapped compo-
nent on the PCI-e bus. We report here the results of a
Xilinx board connected to the host computer via a PCI-
e X4 gen1 bus. The host computer runs RHEL 5.3 x64
with AMD Athlon-II X2 at 2.8 GHz.

3

Fig. 1. PCIe linked DFP Vector Co-processor

This system runs the simplified billing application of
the C-coded telco benchmark [5] in two modes: a pure
‘software’ mode based on the DecNumber library [6]
and a ‘hardware’ mode. The software mode depends on
the decDouble module that is a part of the decNumber
package, written in C, and implements the decimal64
format of the standard using the decimal encoding. The
decimal arithmetic calculations constitute about 73.4% of
the benchmark time.

Due to the PCI-e bandwidth limitation, each scalar
DFP operation suffers from two PCI-e slow round trips
leading to a delay of 2.3µs before the initiation of a
new operation. The performance ceiling of 1

2.3µs = 435K
Operation per second is unacceptable since it is almost
25 times slower than software. This connection, in Fig. 1,
however, models how an existing architecture may be
retrofit with a DFP acceleration card. A much higher
performance is expected from a direct implementation
within a processor core.

Our proposed co-processor is a vector —rather than
scalar— co-processor designed with internal register
banks. The internal registers are designed to support a
vector datatype, where a vector is a collection of many
related decimal floating point numbers. Another register
file is designed to support scalar operands. This variety
of supported data types allows the co-processor to han-
dle decimal operations with operands of vector and/or
scalar format. Our DFP cores are connected within the
co-processor on a bus controlled by a bus arbiter to
control the internal data transfers. We intend to have an
instruction set to support the standard functions men-
tioned in IEEE Std. 754-2008 including the whole decimal
operations, comparison operations, and the conversion
operations. Some of the instructions developed control
the internal data transfer between the DFP cores in
order to execute algorithm containing several dependent
decimal operations without PCI-e transfer by keeping
the intermediate results stored internally. This design
cuts down the PCI-e transfers enormously, resulting in
much higher performance.

The intermediate results are stored in a format of sign,
Exponent, a Binary Coded Decimal BCD significand
and some special flags to indicate whether the number

TABLE 1
SW versus HW modes of telco benchmark

SW 1.130 s (IO overhead = 9% ≈ 100 ms)
SW no IO 1.035 s
SW no IO no toString 0.960 s

HW 0.205 s (IO overhead = 53% ≈ 100 ms)
HW no IO 0.095 s
HW no IO no toString 0.0125 s

Fig. 2. SW and HW timing for telco benchmark

is normal or infinity or NotaNumber (NaN). Storing
the received input data and the intermediate results
internally in such a format eliminates the overhead of
the conversion from/to the standard decimal encoding
format during each decimal operation. The result of a
decimal operation is considered as intermediate result by
default and stored in the internal vector register banks,
when the software algorithm needs a result of a certain
decimal operation, it sends a vector store instruction to
the co-processor to send the results back to the memory
of the host computer. Since the synthesized DFP cores
may have a different number of pipeline stages, we
designed a simple data hazard handler to keep the data
transfer synchronization between the DFP cores.

In the vector hardware mode, when a decimal opera-
tion is needed the processor of the host machine sends
vector operands to SilMinds DFP hardware through a
DMA transfer then reads the final result through an-
other DMA transfer. The DMA is configured to have 2
DMA channels, a maximum payload size of 256 Bytes,
a maximum read request size of 512 Bytes and a to-
tal of 16 outstanding requests. We modify the telco
benchmark source code to have the decimal arithmetic
calculations part be executed by our DFP hardware unit.
The total time to run the benchmark includes a part
for input/output manipulation of the data from files
on the disk as well as changing the numerical values
to printable strings. We illustrate the effect of those two
factors in our results shown in table 1. Figure 2 shows the
same results graphically. The use of our hardware units
leads to a clear speedup for the complete program of
1.13/0.205 = 5.51. If the computation only is considered
we get even higher speedups: 1.035/0.09 = 11.5 (no IO)
and 0.96/0.0125 = 76.8 (no IO, no toString).

4

4 CONCLUSIONS

This work presents the prototype of our decimal co-
processor. According to the authors’ knowledge, this is
the first decimal co-processor in the world. We imple-
mented our designs in FPGA and tested them using
various test benches. Furthermore, we ran a typical
application on a processor connected to our vector co-
processor including our DFP designs.

We anticipate that support for decimal floating point
may be retrofit into older architectures as add-on acceler-
ation cards such as the one we presented in this paper.
DFP might be supported directly within processors in
future architectures as well.

REFERENCES

[1] W. Buchholz, “Fingers or fists? (the choice of decimal or binary
representation),” Communications of the ACM, Dec. 1959.

[2] “IEEE standard for floating-point arithmetic,” New York, NY,
Aug. 2008, (IEEE Std 754-2008).

[3] M. F. Cowlishaw, “Decimal floating-point: algorism for
computers,” in 16th IEEE Symposium on Computer Arithmetic:
ARITH-16 2003

[4] European Commission, The Introduction of the Euro and the
Rounding of Currency Amounts, European Commission Directorate
General II Economic and Financial Affairs, Belgium, 1997.

[5] M. F. Cowlishaw, “The ‘telco’ benchmark,”. Available: http:
//speleotrove.com/decimal/telco.html

[6] M. Cowlishaw, The decNumber C library, IBM Corporation, Apr.
2007, version 3.40.

[7] M. Cornea, C. Anderson, J. Harrision, P. Tang, E. Schneider, and
C. Tsen, “A software implementation of the IEEE 754r decimal
floating-point arithmetic using the binary encoding,” in Proceed-
ings of the IEEE International Symposium on Computer Arithmetic,
Montpellier, France, Jun. 2007.

[8] L.-K. Wang, M. J. Schulte, J. D. Thompson, and N. Jairam, “Hard-
ware designs for decimal floating-point addition and related
operations,” IEEE Transactions on Computers, Mar. 2009.

[9] R. Raafat, A. M. Abdel-Majeed, R. Samy, T. ElDeeb, Y. Farouk,
M. Elkhouly, and H. A. H. Fahmy, “A decimal fully parallel
and pipelined floating point multiplier,” in Forty-Second Asilomar
Conference on Signals, Systems, and Computers, Asilomar, California,
USA, Oct. 2008.

[10] L.-K. Wang and M. J. Schulte, “A decimal floating-point divider
using Newton–Raphson iteration,” Journal of VLSI Signal Process-
ing, vol. 49, no. 1, pp. 3–18, Oct. 2007.

[11] H. Nikmehr, B. Phillips, and C.-C. Lim, “Fast decimal floating-
point division,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 14, no. 9, pp. 951–961, Sep. 2006.

[12] L.-K. Wang and M. J. Schulte, “Decimal floating-point square
root using Newton–Raphson iteration,” in 16th IEEE International
Conference on ASAP 2005: 23–25 July 2005, Samos, Greece.

[13] E. M. Schwarz, J. S. Kapernick, and M. F. Cowlishaw, “Decimal
floating-point support on the IBM system z10 processor,” IBM
Journal of Research and Development, vol. 53, no. 1, 2009.

[14] L.-K. Wang, C. Tsen, M. J. Schulte, and D. Jhalani, “Benchmarks
and performance analysis of decimal floating-point applications,”
in ICCD 25th International Conference on Computer Design, Oct.
2007, pp. 164–170.

[15] H. A. H. Fahmy, R. Raafat, A. M. Abdel-Majeed, R. Samy, T. El-
Deeb, and Y. Farouk, “Energy and delay improvement via decimal
floating point units,” in Proceedings of the 19th IEEE Symposium
on Computer Arithmetic, Portland, Oregon, USA, pp. 221–224, June
2009.

[16] R. Samy, H. A. H. Fahmy, R. Raafat, A. Mohamed, T. ElDeeb, and
Y. Farouk, “A decimal floating-point fused-multiply-add unit,” in
Fifty-Third MidWest Symposium on Circuits and Systems, (MWSCS),
Seattle, Washington, USA, Aug. 2010.

[17] Sun Microsystems, BigDecimal (Java 2 Platform SE v1.4.0),
Sun Microsystems, Mountain View, CA, USA, 2002. [Online].
Available: http://java.sun/com/products

[18] D. M. Russinoff, “A mechanically checked proof of IEEE
compliance of the floating point multiplication, division and
square root algorithms of the AMD-K7TM processor,” LMS
Journal of Computation and Mathematics, vol. 1, pp. 148–200, 1998.

[19] C. Kern and M. R. Greenstreet, “Formal verification in hardware
design: a survey,” ACM Transactions on Design Automation of
Electronic Systems., vol. 4, no. 2, pp. 123–193, Apr. 1999.

[20] “Floating point test suite.” [Online]. Available: http://www.
haifa.ibm.com/projects/verification/fpgen/ieeets.html

[21] A. Sayed-Ahmed and H. A. H. Fahmy, “Three Engines to Solve
Verification Constraints of Decimal Floating-Point Operations,”
Submitted to the Forty-Fourth Asilomar Conference on Signals,
Systems, and Computers, 2010, Asilomar, California, USA.

[22] “Silminds decimal parsing tool.” [Online].
Available: http://www.silminds.com/index.php?option=com
content&task=view&id=10&Itemid=37

[23] A. Vazquez, E. Antelo, and P. Montuschi, “A new family of
high-performance parallel decimal multipliers,” in Proceedings of
the 18th IEEE Symposium on Computer Arithmetic, June 25–27,
2007, Montpellier, France.

