
Algorithm and Architecture for on-line Decimal
Powering Computation

Mahmoud Y. Hassan∗, Tarek ElDeeb∗ and Hossam A. H. Fahmy†
∗SilMinds, Maadi, 11431, Helwan, Egypt
Email: mahmoud.yousef@silminds.com

†Electronics and Communications Department, Cairo university, Egypt
Email: hfahmy@stanfordalumni.org

Abstract—An architecture for the computation of a decimal
powering function is presented in this paper. The algorithm con-
sists of a sequence of overlapped operations: 1) digit recurrence
logarithm, 2) sequential multiplication, and 3) on-line antiloga-
rithm. A correction scheme is introduced between the overlapped
operations to guarantee correct on-line calculations. Execution
times are estimated for decimal64 and decimal128 formats of the
IEEE 754-2008 standard for floating point arithmetic.

I. INTRODUCTION

Interest in decimal arithmetic increased considerably in
recent years. There are many commercial demands for Dec-
imal Floating Point (DFP) arithmetic operations such as tax
calculations, currency conversion and phone billing. Power-
ing (XY ) is an important function in financial applications
such as interest rate calculations. Decimal Powering function
pow(x,y)= xy where x ∈ [−∞, +∞] and y ∈ [−∞, +∞]
is defined in the new IEEE 754-2008 standard [1] and is
implemented in this work. The standard also defines other
functions such as: compound(x,n)= (1 + x)n, pown(x,n)= xn

where n is an integer, powr(x,y)= xy (derived by considering
only exp(y× log(x)) where x ∈ [0, +∞] and y ∈ [−∞, +∞].

Most elementary functions are implemented using software
libraries due to the advantage of using large look up tables
and providing more accurate results. However, software algo-
rithms are not suitable for numerical intensive and real time
applications due to their slow operation, 100 to 1000 slower
than what can be implemented in hardware [2]. Therefore,
new algorithms and hardware implementations for elemen-
tary decimal floating point arithmetic functions have been
introduced recently [3] [4] [5]. The accurate computation of
the floating point powering function is difficult and requires
wider calculating precisions as explained by the Table Maker’s
Dilemma [6]. A composite iterative algorithm for the compu-
tation of binary powering function is introduced in [7]. In this
paper, we give a detailed description of an iterative algorithm
for the computation of the decimal powering function (XY ).
Three overlapped operations: logarithm, multiplication and
antilogarithm are done iteratively combined with a correction

The project ”Promoting Egypt as the first decimal Arithmetic Intellectual
property cores provider for financial applications in the world” (grant number
C2/S1/163) is funded by the RDI Programme through the EU-Egypt Innova-
tion Fund (EEIF). The RDI Programme is a programme of the Ministry of
Higher Education and Scientific Research funded by the European Union.

scheme between subsequent operations. The final result is
faithfully rounded, that is the result is one of the immediate
floating point neighbors to the exact result. To the best of
the authors knowledge, this is the first work to implement a
decimal floating point powering function on hardware.

The paper is organized as follows: section II introduces the
decimal powering. Section III shortly presents the testing and
implementation results while section IV gives the conclusions.

II. ALGORITHM

The algorithm is based on the mathematical identity:

XY = 10Y log10X for X > 0 (1)

For X < 0, invalid operation is signaled out for finite non-
integer Y . A negative final result is obtained for X < 0 and
an odd integer Y . For X < 0 and an even integer Y , the final
result is positive. Both inputs X and Y are decimal floating
point operands and their absolute values are denoted M̂x10Ex

and M̂y10Ey respectively. Hence,

XY = 10M̂y10Ey log10(M̂x10Ex ) (2)

= 10M̂y10Ey (log10(M̂x)+Ex)

And when both M̂x and M̂y are normalized, then

XY = 10My10Ey+L(log10(Mx)+Ex+K) (3)

Where L is the leading zero count of M̂y and K is the integer
part of the logarithm’s result when normalizing M̂x and can
be calculated by subtracting leading zero count of M̂x from its
precision. Thus, to calculate the final result, three composite
operations have to be performed consecutively, logarithm,
multiplication and antilogarithm. Moreover, in order to reduce
the latency of the powering function, the sub operations have
to be computed on-line [7]. That is, every stage starts its
operation based on a calculated digit in the previous stage.
Special data NaN, Inf and 0 are handled according to the IEEE
standard’s specifications for floating point arithmetic [1].

A. Logarithm (log10)

Logarithm is computed iteratively using the digit recurrence
algorithm with selection by rounding. Pineiro et al. [8] in-
troduced an algorithm for the computation of logarithms for
binary floating point numbers. Chen et al. [3] adapted the same
algorithm to decimal floating point numbers.



TABLE I
LOOK UP TABLE FOR e1 SELECTION

Ranges of m e1

[0.96, 1.00) 0
[0.88, 0.95] 1
[0.81, 0.87] 2
[0.76, 0.80] 3
[0.70, 0.75] 4
[0.66, 0.69] 5
[0.62, 0.65] 6
[0.59, 0.61] 7
[0.56, 0.58] 8
[0.50, 0.55] 9

1) Algorithm: A logarithmic result log10(x) can be
achieved according to [3] based on the mathematical identity:

log10(m) = log10(m
∏

fj)−
∑

log10(fj) (4)

So log10(m) = −
∑∞

j=1 log10(fj) if the first term converges
to zero. fj is defined as fj = 1 + ej10−j , this form allows
the use of a shift-and-add implementation. The corresponding
recurrences for computing the logarithm are:

E(j + 1) = E[j](1 + ej10−j) (5)
L(j + 1) = L(j)− log10(1 + ej10−j) (6)

Where, E[1] = m and L[1] = 0. The digits ej are selected so
that E(j +1) converges to 1. To have a selection function for
ej , a scaled remainder is defined as ,

W [j] = 10j(1− E[j]) (7)

Substituting (7) in (5) yields,

W [j + 1] = ejW [j]10−j+1 + 10(W [j]− ej) (8)

And ej+1 digits are selected by rounding W [j + 1] to the
integer part in every iteration.

ej+1 = round(W [j + 1]) (9)

The logarithmic result is achieved through sequential additions
according to (6), where the values of log(1 + ej10−j) are
stored in a look up table. The series expansion of the logarithm
function :

log10(1 + x) =
(x− x2

2 + . . . )
ln(10)

(10)

is used to reduce the size of this look up table. After iteration
j = k the values of log10(1+ej10−j) can be approximated by
ej10

−j

ln(10) . The selection of the k value depends on achieving the

constraint
e2

j10−2j

2ln(10) < 10−n, where n is the required accurate
precision to be calculated. According to [3], the value of e1

is obtained by look up table (I), where the input is in the
range 0.5 ≤ m < 1 and the number in the range 0.1 ≤
m < 0.5 needs to be adjusted. The adjustment can be done by
multiplying the input with (2, 3 or 5) and adding a value of
(log(2), log(3) or log(5)) to the logarithm result. ej+1 values
are selected by rounding the scaled remainder for iterations
j ≥ 2.

2) Error analysis:
a) Inherent Error of Algorithm: This error results from

the difference between the logarithm result obtained from finite
iterations and the exact result obtained from infinite iterations.
Since the decimal logarithmic result is achieved after nth

iteration, εi can be defined as:

εi = −
∞∑

j=n

log10(1 + ej10−j) (11)

Since ej represents the error between two successive iterations
and ej ∈ [−9, 9] ,we choose the worst cases (ej = 9 or − 9)
to analyze maximum εi

εi = −
∞∑

j=n

log10(1± 9× 10−j) (12)

According to (12), maximum εi is in the range:

−4.34× 10−n ≤ εi ≤ 4.34× 10−n (13)

b) Approximation Error: The approximate value ej10
−j

ln(10)

is used to estimate log(1 + ej10−j) from the kth to the
nth iteration. According to the series expansion of logarithm
function in (10), Since the value of log(1+x) is approximatd
by x

ln(10) after the kth iteration. Putting x = ej10−j , this
produces an approximation error, εa:

εa =
n∑

j=k

− (ej10
−j)2

2 + (ej10
−j)3

3 − · · ·
ln(10)

(14)

Since
n∑

j=k

(ej10
−j)3

3 − · · ·
ln(10)

� 10−n (15)

So higher order terms can be neglected with respect to
− (ej10

−j)2

2ln(10) ,

εa ≈
n∑

j=k

− (ej10−j)2

2ln(10)
(16)

Considering the worst cases (ej = 9 or − 9) we obtain the
maximum εa:

εa ≤ 1.78× 10−(2k−1) (17)

c) Quantization Error: Since only those intermediate
values who have finite precisions are operated in the hardware-
oriented algorithm, three quantization errors occur. First, the
logarithm results are achieved by accumulating the n-digits
rounding values of −log10(1 + ej10−j) from the 1st to the
kth iteration. In each iteration, the maximum rounding error
of −log10(1 + ej10−j) is 0.5× 10−n therefore the maximum
εq1 is:

εq1 ≤
k∑

j=1

0.5× 10−n

≤ 0.5k × 10−n

Second, the logarithm results are achieved by accumulating
the n−digit rounded values of −ej10

−j

ln(10) from the kth to the



nth iteration. Since the values of −ej

ln(10) are precomputed
and stored in a Look Up Table (LUT) for ej ∈ [−9, 9]
followed by a shifter to achieve the multiplication by 10−j , the
maximum rounding error of −ej10

−j

ln(10) is 0.5× 10−n therefore
the maximum εq2 is:

εq2 ≤
n∑

j=k+1

0.5× 10−n

≤ 0.5× (n− k − 1)× 10−n

Third, the logarithm result log10(M
′

x) is adjusted by a finite
n-digit rounded constant (0, log10(2), log10(3) or log10(5)) in
the last iteration, so the maximum εq3 is:

εq3 ≤ 0.5× 10−n

Therefore, the maximum quantization error εq is:

εq ≤ εq1 + εq2 + εq3

≤ 0.5k × 10−n + 0.5× (n− k − 1)× 10−n + 0.5× 10−n

≤ 0.5× n× 10−n

d) Error Estimation: Since the final logarithm result is
faithfully rounded, it has a maximum rounding error of εr =
1×10−n. Hence the total error introduced is due to εi, εa, εq

and εr:

Etotal = εi + εa + εq + εr (18)

= (5.34 + 0.5n)× 10−n + 1.78× 10−(2k−1)

According to equation (10), approximation can be done after
the kth iteration where,

k = −1
2
log10

(
2ln(10)× 10−n

81

)
(19)

=
n

2
+ C

And C is a constant equal to − 1
2 (log10(2ln(10))−log10(81)).

Substituting (19) into (18) leads to:

Etotal = (5.34 + 0.5n)× 10−n + 1.78× 10−2C+1 × 10−n

Hence, Etotal = (A+0.5n)×10−n where A is a constant equal
to (5.34+1.78×10−2C+1). Hence, Etotal×10n is proportional
to the calculation precision n. Moreover, Etotal < 0.5×10n−2

up to n = 88 digits. That is, if a calculating precision of
n < 88 is used, a total maximum error of 0.5 × 10n−2 is
guaranteed according to this error analysis.

3) Architecture: The hardware implementation of the log-
arithmic converter circuit includes two stages. Stage 1 is to
obtain ej+1 with selection by rounding. After ej+1 is achieved,
the logarithm result is produced in stage 2. The block diagrams
illustrating the architecture of stage 1 and stage 2 are shown
in figure(1) and figure(2) respectively. The used Multiplier and
CPA are both implemented based on [9] [10]. In the first stage,
a multiplier by one digit using Signed Digit (SD) recoding for
ej+1 produces two partial products. Two barrel shifters are
used to achieve the first term of equation(8) ejW [j]10−j+1.
The other term includes an addition operation, but it can be

Mux1

ej

0

e1

1

44

4

Mux2

M
′
x

1 0

4n 4n

4n

Multiply By One Digit

4(n + 1)

Wj − ej Logic

4(n + 1)

Shifter ×10−j

ejWj

a set of two shifters

Three To Two Compressor

W [j]− ejejW [j]10−j

4(n+1)digits-CPA
Sum Carry

RoundReg1 Reg2

W [j + 1]
×10 (wire shift)

4n8

W [j]

ej

4

to Stage 2

Fig. 1. Architecture of Logarithm’s First stage

Mux1

ej

0

e1

1

44

4

Addr-Gen

Addr Width

LUT-1

LUT-2

Shifter ×10−j

4(n− k)

4n 4n 4n 4n

Mux2 Mux3

CPA reg

AdjustmentV alue

4

log(M
′
x)

Fig. 2. Architecture of Logarithm’s Second stage

implemented by a simple logic as ej+1 is the integer one digit
resulting from rounding the scaled remainder W [j]. Thus, the
result of the subtraction is always the fraction part of W [j].
Table(II) illustrates the operation by an example, where either
the fraction of W [j] or its complement is selected when the
sign of W [j] is 0 or 1 respectively. In the second stage, ej

values are used to choose the value of log(1 + ej10−j) from
the look up table which will be added sequentially to achieve
the final logarithm result. Note that e1 is obtained from look
up table (I). In the approximation phase, a multiplication by

1
ln(10) is needed according to equation(10). This operation can
be achieved by storing the values of ej

ln(10) in a ROM followed

by a shifter to compute ej10
−j

ln(10) .
4) Logarithm Extension and counting leading zeros: Recall

that our proposed power computing algorithm is based on (3):

XY = 10My10Ey+L(log10(Mx)+Ex+K)

where both Mx and My are normalized. If Ex + k happens
to be zero and Mx is all 9s, then

log10(0. 999 · · · 999︸ ︷︷ ︸
p

) = 0. 000 · · · 000︸ ︷︷ ︸
p

xxxx



TABLE II
W [j]− ej LOGIC

cases W [j]− ej W[j] (W [j]− ej )
sign fraction

−2.4→ −2 −0.4 1 complement
−2.7→ −3 0.3 1 complement

2.4→ 2 0.4 0 fraction
2.7→ 3 −0.3 0 fraction

TABLE III
NUMERICAL EXAMPLE

log10(0.2847737800173746)
j ej result

1st 2 0.566302500767 · · ·
2nd −3 0.543074235033 · · ·
3rd 6 0.545672215753 · · ·
4th −4 0.545498463207 · · ·
5th 0 0.545498463207 · · ·
6th 4 0.545500200382 · · ·
7th −5 0.545499983235 · · ·

Now, assume a positive value of Ey+L, then log result will be
right shifted by Ey +L amount before feeding the result to the
next stage. So, in the case of positive Ey+L, the leading zeros
appearing in log operation result need to be eliminated and in
the same time an extended precision needs to be calculated. In
the case of decimal-64 and decimal-128 formats, the maximum
number of leading zeros that may appear in the result is 16
and 34 zeros respectively.

5) Alternating behavior of log results: Here we show how
the log stage’s result can affect the subsequent stage due to
on-line operation. Table (III) shows the iterations results for
log10(0.2847737800173746). One digit is fed on-line to the
next stage every iteration. For the example shown , in 4th

iteration, the on-line digit 4 switches to 5 in 6th iteration and
switches again to 4 in 7th iteration. This switching action has
to be accounted for in the next stage iteratively and is handled
in section(II-B).

B. Sequential multiplication

Multiplication is the second stage in the decimal power
computing algorithm. It is done from left to right on-line and
iteratively. The multiplication operation is based on Signed
Digit (SD) format to reduce the number of generated multiples
[9]. The operands of the multiplication are: input My and
log10(Mx) + Ex + k, where both inputs Mx and My are
normalized. Since Mx is normalized, the result of log10(Mx)
is always a negative fraction. Thus, depending on the sign of
Ex +k, which is always integer, log10(Mx) or its complement
is combined with Ex +k to achieve log10(Mx)+Ex +k. The
log-stage outputs a correct digit with an error < 0.5ulp per
iteration. Hence, we choose to use the SD redundant format for
log-stage results. As shown in table IV, where l is a digit < 5
and h is a digit ≥ 5, two numbers which differ in 0.5ulp are
coded to the same value. For example, 26 and 32 are both
coded into 3. This facilitates the on-line operation of mult-
stage after log-stage as follows:

TABLE IV
SD RECODING

digits SD digits SD

0
0l 0

5
5l 5

0h 1 5h 4

1
1l 1

6
6l 4

1h 2 6h 3

2
2l 2

7
7l 3

2h 3 7h 2

3
3l 3

8
8l 2

3h 4 8h 1

4
4l 4

9
9l 1

4h 5 9h 0

1) Sources of error and correction scheme: The numbers
which can result in a multiplication error, due to a change in
a log-stage result, are the values which are coded to the same
SD value but with opposite signs such as: 4h, 5l, 9h, 0l. Also,
the values at the boundary of 0.5 such as: 3l, 3h...etc

a) Same value but opposite sign: The ten’s complement
of the partial product can be formed of its nine complement
with a predicted tail digit of 1 in the previous partial product.
This tail digit value is decided upon the next digit in the
multiplicand (log-stage value). If the value of log-stage result
switches from 999 · · · 999 to 1000 · · · 000 (a wrong prediction
of a tail digit), a tail digit of 1 needs to be eliminated. In the
same way, a tail digit of 1 needs to be added if the log-stage
result switched from 1000 · · · 000 to 0999 · · · 999 (missed tail
digit). This error can be corrected by using two shift registers
with an initial values of 999 · · · 999 and 000 · · · 0001. These
values are added to the result of multiplication whenever this
case is detected. In case of 5l and 4h, no correction is needed
because 5 and its ten’s complement have the same value.

b) Boundary of 0.5: This case can be best shown by an
example. Assume a result from log-stage while operation to be
649 · · · which is switched to 650 · · · in the next iteration, and
is needed to be multiplied by My = 1. In the first iteration, the
result of the multiplication will be 4 (which can be thought
of as 6). In the second iteration the result will be 4 + 0.5
(which can be thought of as 5.5). Noting that the correct result
is obtained in the second iteration, the actual result then is
3.5(which can be thought of as 6.5). Hence, whenever this case
is detected, the ten’s complement of the next partial product is
negated, that is, according to the same example, in the second
iteration the result of multiplication will be 4 + 0.5 instead of
4 + 0.5. In case of 550 · · · switching to 549 · · · no correction
is needed because the value of 5 is equal to the value of 5.

2) Architecture: The architecture of the proposed sequential
multiplier combined with the correction scheme for the on-line
results is shown in figure(3).

Firstly, log-stage result is shifted left to obtain the current
and next slice. Current and next slice (each slice is two digits)
are passed to the SD recoding blocks. A comparison between
current slice and a delayed (by one clock cycle) version of
it is done to determine the sign of the current partial product
according to the proposed correction scheme. The value of
SD1 and comparator output select one of the generated PP



Shifter1

log(Mx) + Ex + k

Multiples
Generation

N C
next and current slices

My

SD2

SD1 Multiples
Selection

tail digit

partial product

x3x4 x2x5 x1

comparator

reg1

CPA

shifter2 shifter3

000 · · · 001 999 · · · 999

Mux

0

3:2

reg2

My × (log(Mx) + Ex + k)

Fig. 3. Architecture of sequential multiplier

or its complement respectively. SD2 determines the value of
the tail digit based on the next slice. A correction vector of
999 · · · 999 or 000 · · · 001 is selected to correct the error due
to a wrong tail digit. Finally, A ThreeToTwoCompressor
followed by a CPA are used to obtain the value of My ×
(log10(Mx) + Ex + k).

C. on-line Antilogarithm

A detailed implementation of a decimal antilogarithm circuit
based on digit recurrence with selection by rounding can be
found in [4]. A detailed error analysis for on-line binary
antilogarithm can be found in [7]. A delay of 2-digits before
calculation is chosen for our proposed implementation. The
recurrence equations for the on-line antilogarithm are:

W [j + 1] = 10W [j]− 10j+1ln(1 + ej10−j) + Xjnew
10−1 (20)

where,

W [j] = 10j × L[j] (21)

And

L[j + 1] = L[j]− ln(1 + ej10−j) (22)
E[j + 1] = E[j]× (1 + ej10−j) (23)

And, ej is selected by rounding W [j + 1] to the integer part
in every iteration.

1) Sources of error: The previous multiplication operation
is carried out from left to right. Thus, in every iteration a new
shifted partial product is added to the previous result. The
current digit in the final result is maximally affected by one
carry resulting from the nearest digit addition.

9999 +
9999

109989

Hence, a comparison which tracks any increment or decrement
that occurs in the previous multiplication-stage digit is
needed. Once a change is detected, the value of Xjnew

has to
be adjusted to compensate the error due to a missed calculated

carry or borrow. The correction of Xjnew
is carried out by

adding (or subtracting) a value of one. Note that the value
of Xjnew

is always multiplied by 10−1 so an integer part
of ’1’ is combined with the new digit or the new digit ten’s
complement is used whenever an increment or decrement is
detected respectively.

III. TESTING AND RESULTS

XY is a bivariate function. So an exhaustive testing for
all combinations of input is considered relatively impossible.
A simple software model targeting the presented sources of
errors is built and used to generate (200,000) test cases. IBM
DecNumber library is used as reference. The test proved cor-
rect results for faithfully rounded decimal power function. The
minimum number of iterations required for decimal powering
computing are 40 and 60 clock cycles for decimal64 and
decimal128 formats respectively. The maximum number of
iterations required when an extended precision of logarithm is
needed are 56 and 84 iterations for decimal64 and decimal128
formats respectively.

IV. CONCLUSION

In this paper, we have presented an on-line algorithm for
decimal powering computation. Three overlapped operations
are done iteratively: logarithm, multiplication and antiloga-
rithm. A correction scheme between adjacent stages is intro-
duced and explained.

REFERENCES

[1] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp.
1 –58, aug. 2008.

[2] M. Cowlishaw, “Decimal floating-point: algorism for computers,” in
Computer Arithmetic, 2003. Proceedings. 16th IEEE Symposium on, 15-
18 2003, pp. 104 – 111.

[3] D. Chen, Y. Zhang, Y. Choi, M. H. Lee, and S.-B. Ko, “A 32-bit
decimal floating-point logarithmic converter,” in Computer Arithmetic,
2009. ARITH 2009. 19th IEEE Symposium on, 8-10 2009, pp. 195 –203.

[4] D. Chen, Y. Zhang, D. Teng, K. Wahid, M. H. Lee, and S.-B. Ko, “A
new decimal antilogarithmic converter,” in Circuits and Systems, 2009.
ISCAS 2009. IEEE International Symposium on, 24-27 2009, pp. 445
–448.

[5] C. A. Marius Cornea. (2010, January) Intel decimal
floating-point math library. Intel Corporation. [Online].
Available: http://software.intel.com/en-us/articles/intel-decimal-floating-
point-math-library/

[6] V. Lefevre, J.-M. Muller, and A. Tisserand, “Towards correctly rounded
transcendentals,” in Computer Arithmetic, 1997. Proceedings., 13th
IEEE Symposium on, 6-9 1997, pp. 132 –137.

[7] J.-A. Pineiro, M. Ercegovac, and J. Bruguera, “Algorithm and architec-
ture for logarithm, exponential, and powering computation,” Computers,
IEEE Transactions on, vol. 53, no. 9, pp. 1085 – 1096, sept. 2004.

[8] ——, “High-radix logarithm with selection by rounding,” in Application-
Specific Systems, Architectures and Processors, 2002. Proceedings. The
IEEE International Conference on, 2002, pp. 101 – 110.

[9] R. Raafat, A. Abdel-Majeed, R. Samy, T. ElDeeb, Y. Farouk,
M. Elkhouly, and H. Fahmy, “A decimal fully parallel and pipelined
floating point multiplier,” in Signals, Systems and Computers, 2008 42nd
Asilomar Conference on, 26-29 2008, pp. 1800 –1804.

[10] H. Fahmy, R. Raafat, A. Abdel-Majeed, R. Samy, T. ElDeeb, and
Y. Farouk, “Energy and delay improvement via decimal floating point
units,” in Computer Arithmetic, 2009. ARITH 2009. 19th IEEE Sympo-
sium on, 8-10 2009, pp. 221 –224.


