
A Decimal Fully Parallel and Pipelined Floating

Point Multiplier

Ramy Raafat1, Amira M. Abdel-Majeed1, Rodina Samy1

Tarek ElDeeb1, Yasmin Farouk1, Mostafa Elkhouly1

Hossam A. H. Fahmy2
1
SilMinds, LLC. Smart Village, B115, 12577, Giza, Egypt.

2 Electronics and Communication Department, Cairo University, Giza, Egypt.

ramy.raafat@silminds.com

Abstract- Decimal arithmetic is important in several commercial

applications including financial analysis, banking, tax calcula-

tion, currency conversion, insurance, and accounting. This paper

presents a fully parallel Decimal64 floating point (FP) multiplier

compliant to IEEE Std 754-2008 for floating point arithmetic.

The proposed multiplier possesses novel methods to target low

latency. The proposed design is based on a previously published

fixed point multiplier [1] that uses a novel BCD–4221 recoding

for decimal digits to improve the area and latency of the partial

product generation and the partial product reduction tree. Sev-

eral enhancements are introduced to the design; the final carry

propagation adder is implemented using a fully parallel decimal

adder with a Kogge-Stone prefix tree, the sticky bit is generated

in parallel to the shifter to reduce the critical path delay. The

design is extendable to support Decimal128 floating point multip-

lication. The multiplier is hardware verified for functionality on

an FPGA.

I. INTRODUCTION

Decimal arithmetic received an increased attention in the

last decade because of its growing need in many commercial

applications and database systems where the binary arithmetic

is not sufficient. The arithmetic operations in these applica-

tions need to be executed in decimal format. This is because

the inexact mapping between some decimal and binary num-

bers, such as 0.1, cannot be represented accurately using bi-

nary format in a limited precision. This leads to an inaccuracy

of floating point decimal arithmetic emulation by floating

point binary arithmetic units.

Decimal arithmetic software libraries have been developed

to overcome the decimal to binary conversion error but they

are about 100 to 1000 times slower than what can be imple-

mented in hardware [2]. In the near future, Decimal floating-

point (DFP) units are expected to be embedded in many pro-

cessors' cores to perform the decimal operation faster than the

software packages and with higher accuracy. Due to the im-

portance and the growing need of the decimal arithmetic, its

specifications are included in the new IEEE standard for float-

ing point arithmetic (IEEE Std 754-2008) [6].

This paper introduces a decimal floating point multiplier

based on radix-10 fixed point multiplier [1] that introduced an

efficient implementation by the parallel generation of partial

products followed by a novel carry save addition (CSA) tree to

end the reduction of the partial products in Carry Save (CS)

format. This carry save addition tree uses a BCD-4221 recod-

ing for decimal digits to improve the area and latency. In our

proposed design, a novel decimal carry propagation adder is

used to add the outputs of the carry save addition tree in order

to get the intermediate product. Since our design is for float-

ing point multiplier, there is a need to calculate additional in-

formation to correctly round the number. The shift amount

calculations and sticky counter calculations are executed early

to reduce the design latency. The novelty of the proposed

design is that it has a low latency and low area compared to

previous decimal multiplier designs.

The paper is organized as follows: Section (II) contains

background information about the decimal multiplication and

an overview on the IEEE Std 754-2008. Section (III) explains

in details the proposed multiplier design and highlights the

novelty in design. Section (IV) contains testing and synthesis

results emphasizing the pipelining results, followed by conclu-

sions in section (V).

II. BACKGROUND

Decimal multiplication performs the computation,

 𝑃 = 𝐴 × 𝐵 (1)

Where A is the multiplicand, B is the multiplier, and P is the

product. It is assumed that A and B are each n digits hence P

is maximally 2n digits that must be rounded in order to fit in a

limited precision of n digits. Several approaches to decimal

multiplication are proposed, the simple and straight forward

one is to iterate over the digits of the multiplier B and based

on the value of the current digit, add the corresponding mul-

tiple of the multiplicand A to an intermediate product. In this

approach the multiplier multiples 2A through 9A must be gen-

erated which consumes large area and delay. Equation 2

represents this approach to decimal multiplication.

 𝑋𝑖+1 = 𝑋𝑖 + 𝐴. 𝐵𝑖 . 10−1 (2)

Where 𝑋 is the partial product, 𝑋0 = 0 and 0 ≤ i ≤ n-1.
Another approach [5] is to generate secondary multiples

which are a reduced set of multiples and generate any other

missing multiple by adding two multiples from this secondary

set based on the value of the current digit of the multiplier B.

This approach reduces the complexity of generating eight mul-

mailto:ramy.raafat@silminds.com

tiples using an addition operation. Equation 3 represents this

approach to decimal multiplication.

 𝑋𝑖+1 = 𝑋𝑖 + 𝐴. 𝐵𝑙

′ + 𝐴. 𝐵𝑙
′′ . 10−1 (3)

Where 𝐴. 𝐵𝑙
′ , 𝐴. 𝐵𝑙

′′ are the secondary multiples which together

equal the proper primary multiple. A parallel decimal multip-

lication is proposed in [1]; this approach improves the latency

of the decimal multiplication and satisfies the concept of pipe-

lining.

The fixed multiplication operation consists of three main

stages: generation of partial products, reduction of partial

products to two operands and a final carry propagate addition.

The proposed design is based on the parallel decimal fixed

multiplier in [1] that recodes the BCD8421 multiplier operand

into redundant signed digit radix-10 representation for fast and

efficient generation of the partial products. It presents also a

novel BCD4221 recoding for decimal digits to improve the

area and latency of partial products reduction tree.

The IEEE Std 754-2008 specifies DFP formats of 64, and

128 bits [6]. An IEEE Std 754-2008 DFP number contains a

sign bit, an integer significand with a precision of n digits, and

a biased exponent. The value of a finite DFP number is:

 𝐷 = −1𝑆𝑖𝑔𝑛 × 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 × 10𝐸−𝐵𝑖𝑎𝑠 (4)

Where, E is the biased non-negative integer exponent. Biased

exponents in this paper represented by E relate to IEEE Std

754-2008’s exponents by:

 𝐸 = 𝑒 + 𝐵𝑖𝑎𝑠 (5)

Where e is the unbiased exponent defined in the IEEE Std

754-2008. The significand can be encoded either in binary or

in Densely Packed Decimal (DPD), which in the IEEE Std

754-2008 is referred to as the decimal encoding. The expo-

nent must be in the range [Emin, Emax], after biasing. The IEEE

Std 754-2008 introduced representations for special values

such as infinity and Not-a-Number (NaN).

The IEEE Std 754-2008 defines the significand of the de-

cimal floating point number as a non-normalized significand.

Thus, the decimal floating-point number may have redundant

representations. For example, the value of 320 × 10
24

may be

represented as 320 × 10
24

, 32 × 10
25

, or 3200 × 10
23

. This set

of representations for a certain decimal floating-point number

is called a cohort. Because of this possibility of multiple re-

presentations, IEEE Std 754-2008 defines a preferred expo-

nent for each arithmetic operation, which for multiplication is:

 𝑃𝐸 = 𝐸𝑎 + 𝐸𝑏 − 𝐵𝑖𝑎𝑠 (6)

Where, 𝐸𝑎 and 𝐸𝑏 are the biased exponents of the multiplicand

and multiplier operands, respectively. The multiplier uses the

preferred exponent when encoding the result of a multiplica-

tion, in order not to have a loss of precision in the output re-

sult.

The multiplier design presented in this paper uses the de-

fined Decimal64 numbers with significands encoded in the

DPD format. This format has 16 decimal digits of precision

(n=16) in the significand, an unbiased exponent range of

[−383, 384], and a bias of 398.

III. PROPOSED MULTIPLIER DESIGN

A. System Overview

The multiplier reads the two operands and extracts the sign,

exponent and significand. The significand is decoded from a

densely-packed decimal (DPD) encoding into Binary Coded

Decimal (BCD). Special values (NaN and Infinity) are de-

tected and handled separately in parallel. The proposed mul-

tiplier contains two main paths: Significand path to generate

the output significand of the product, and the exponent path to

generate the output exponent of the product and the corres-

ponding flags. The proposed design block diagram is shown

in Fig. 1.

The fixed point multiplier (FPM) operates once the decoded

significands become available. The FPM generates (n+1) par-

tial products in parallel and reduces them to two vectors (sum

and carry) using a carry save addition (CSA) tree. These two

vectors are added using a novel fast decimal carry propagation

adder based on a Kogge-Stone prefix tree.

In parallel with FPM, the exponent of the intermediate

product, shift amount and sticky counter are calculated in the

Master control (MC) unit. The calculated shift amount is used

to align the output product to match the preferred exponent.

The calculated sticky counter represents the number of digits

to the right of the round digit. The MC unit produces a bit

vector (mask) to generate the sticky bit in parallel to the shif-

ter, rather than waiting for its result. This technique improves

the latency significantly. The output of the shifter and the

sticky bit are introduced to the rounder block which is mainly

a decimal incrementer and a multiplexer to fit the result in the

required precision. Finally, the output formulation selects

either the rounded intermediate product or the special values

based on exceptional conditions specified by the MC unit.

The output is encoded and formulated to match the IEEE Std

754-2008 format.

B. Fixed Point Multiplier

Fixed point multiplier consists of three main blocks. The

partial product generation generates multiples of multiplicand

based on the multiplier digits. The CSA reduction tree reduc-

es the generated partial product to two vectors (CS format) to

be added. The decimal carry propagation adder adds the out-

put from the CSA tree, generating an intermediate product to

be aligned based on the shift amount generated from the MC

and then the shifted product is rounded to fit in the required

precision of n digits.

The fixed point multiplier design is based on the highly pa-

rallel decimal fixed point multiplier presented in [1]. It uses

the signed digit recoding technique to generate partial prod-

ucts in parallel. This recoding transforms the multiplier digit

set {0. . . 9} into the signed–digit (SD) set {−5. . . 5} to

perform the selection of multiples in a similar way as modified

Booth recoding.

Decimal multiplicand multiples 2A, 3A, 4A and 5A are ob-

tained from a few levels of logic using recoding and wired left

shifts. The generation of negative multiples is performed by

evaluating the 10’s complement of positive multiples.

A multiple sets of the multiplicand (A) are generated, con-

currently, the multiplier (B) digits are encoded into (n+1) SD

radix-10 digits; each recoded digit is used to generate one par-

tial product by selecting one multiple set from the generated

sets of the multiplicand. Fig. 2 illustrates a block diagram of

the multiplier encoding and the multiple sets selection units.

The generated partial products are reduced using the CSA

tree, the main unit in the CSA tree is a 3:2 compressor which

takes three partial products and yields two vectors sum and

carry, the carry vector must be corrected to be suitable for

addition with the sum vector. To reduce the complexity of

this correction stage, the partial products are generated in

BCD-4221 format.

In our proposed design for the DFP multiplier, the output

two vectors from the CSA tree are introduced to a novel de-

cimal carry propagation adder to generate the intermediate

product. The proposed decimal carry propagation adder is

illustrated in Fig. 3.

The carry propagation is based on a Kogge-stone tree that

aims to propagate the carry faster. The inputs of the Kogge-

Stone tree are Generate and Propagate signals. The Generate

signal (Gs) is raised when the sum of the corresponding digits

in the input operands is more than 9, and the Propagate signal

(Ps) is raised when the sum is exactly 9. As the carry propa-

gation lies in the critical path of the decimal adder, we calcu-

late the Gs and Ps signals early in parallel while computing

the sum and sum+1 of each corresponding digits in the input

operands. The sum+1 of each corresponding digits is to be

selected if the carry from the previous digit is 1. The digits

are summed using a four bit binary adder followed by a cor-

rection unit to fit the output digit in the range from {0…9}. A

straightforward design would have waited for sum digits to

Fig. 3. Decimal Carry Propagation Adder

(𝑂𝑃𝐴 , 𝑂𝑃𝐵)

Sum++ Sum

Correct and incre-

ment unit

4-Bit Adder

Convert to

8421 format

Convert to

EX3 format

Kogge-Stone

Tree

Ps and Gs

Generation

Mux.

Fig. 2. Multiplier Encoding and Selection Unit

𝑦𝑠𝑖

Partial Product i

𝑦4𝑖 𝑦3𝑖 𝑦2𝑖 𝑦5𝑖

5A 4A 3A 2A A

𝑦1𝑖

Mux-5

XOR

𝐵𝑖 𝐵𝑖−1

Digit BCD - 8421

BCD-8421 to SD radix-

10 Recoder

𝑦𝑠𝑖 𝑦5𝑖 𝑦4𝑖 𝑦3𝑖 𝑦2𝑖 𝑦1𝑖

SD digit {-5…5}

Fig. 1. Block Diagram of DFP Multiplier

RIP

Sign

SIP

Sb

SC

LRSA from MC

FP

EF

Exp
EA,

SA,

EB,

SB

A = Multiplicand

B = Multiplier

SA = Significand of operand A

SB = Significand of operand B

EA = Exponent of operand A

EB = Exponent of operand B

IP = Intermediate Product

SC = Sticky Counter

EF = Exception Flags

Exp = Final Exponent

LRSA = Left/Right Shift Amount

Sb = Sticky bit

SIP = Shifted Intermediate Product

RIP = Rounded Intermediate Product

FP = Final Product

Rnd

Mode

A

B
Sticky

Generation

Rounder

O
u

tp
u
t

F
o

rm
u
la

-

ti
o

n

IP

L
/R

 S
h
if

te
r

F
o

rm
u
la

ti
o

n
 a

n
d
 D

et
ec

-

ti
o

n

Master Control

(MC)

Fixed Point

Multiplier

generate the Gs and Ps signals. In our design, the two input

operands are converted to excess3 format and are introduced

to a few levels of logic to check if the sum of each corres-

ponding digits is greater than or equal nine to generate the Gs

and Ps signals. Then, the Gs and Ps signals are introduced to

the Kogge-stone tree. The output of the Kogge-stone tree is a

carry vector; each bit in this vector selects the corresponding

digit in the output sum. The Kogge-stone tree stages in this

design are based on the number of input operand digits not on

the number of bits, which improves the latency and reduces

the area of the design.

C. Master Control Unit

The exponent of the intermediate product, shift amount and

the sticky counter are calculated in the master control unit in

parallel with the fixed-point multiplication. The decimal point

should be in the middle of the intermediate product which is

(2n) length. Thus (n) digits of the intermediate product are to

the right of the decimal point. This increases the exponent of

the intermediate product (EIP) by (n). The EIP is calculated

using (7),

 𝐸𝐼𝑃 = 𝐸𝑎 + 𝐸𝑏 − 𝐵𝑖𝑎𝑠 + 𝑛 (7)

The intermediate product result from the fixed point multip-

lier may need to be left/right shifted to achieve the preferred

exponent or to bring the result exponent into the range. The

shift amount is determined based on the number of leading

zeros in the intermediate product and the difference between

the calculated exponent and the minimum and maximum ex-

ponent defined in the IEEE Std 754-2008.

The product may need to be left shifted one additional digit

after matching the preferred exponent, if a leading zero is de-

tected. Hence, the exponent is updated. Instead of waiting for

the intermediate product to count its leading zeros, the latency

of the multiplier is improved by determining the output lead-

ing zeros based on the leading zeros in the multiplicand and

the multiplier. The basic shift amount is calculated using (8),

 𝑆𝐿𝐴 = 𝑀𝑖𝑛(𝐿𝑍𝑎 + 𝐿𝑍𝑏 , 𝑛) (8)

 Where SLA=Shift Left Amount, 𝐿𝑍𝑎 , 𝐿𝑍𝑏 are the leading

zeros count in the multiplicand and multiplier respectively.

If the product is a non-zero floating point number with

magnitude less than the magnitude of that format’s smallest

normal number (i.e. the result is a subnormal number), a right

shifter is needed to bring the exponent into range even if

some precision digits are lost. After shifting the intermediate

product, the least (n-2) digits in the intermediate product must

be ORed to check if a non-zero digit exist or not, and any

shifted digits to the right must be taken into consideration in

sticky bit generation. A sticky counter generated from the

MC contains the number of digits that must be ORed to gen-

erate the sticky bit. To improve the latency of the multiplier,

a novel sticky bit generation unit is developed to generate the

sticky bit in parallel with the shifter, the sticky counter is used

for generating a bit vector of (2n) length; the vector has 1’s in

bits corresponding to the digits that will be ORed to generate

the sticky bit, and 0’s in the other bits. The vector is ANDed

with the intermediate product then the resultant bits are ORed

together to generate the sticky bit. Sticky counter (SC) is cal-

culated early as it depends also on the leading zeros in the

multiplier and multiplicand.

 𝑆𝐶 = 𝑀𝑎𝑥(0, 𝑛 − (𝐿𝑍𝑎 + 𝐿𝑍𝑏)) (9)

The sticky counter is decremented twice. This insures that

the round and guard digits are not included in the sticky bit

generation.

D. Rounding and output formulation

Rounder takes (n+1) digits from the shifted intermediate

product (SIP) and the sticky bit. The proposed multiplier sup-

ports the five rounding directions listed in the IEEE Std 754-

2008 (Round to Nearest Ties to Even (RNE), Round to Near-

est Ties Away from Zero (RNA), Round to Positive Infinity

(RPI), Round to negative Infinity (RNI), Round Toward Zero

(RTZ)). Additionally, it supports two other rounding direc-

tions listed in [3]. (Round Away from Zero (RAZ), Round to

nearest, Ties Toward Zero (RNZ)). Table I illustrates the

rounding scheme used in our DFP multiplier design.

LSB Sticky

Bit

Round

Digit

RNE

(+/-)

RAZ

(+/-)

RPI

(+/-)

RNI

(+/-)

RTZ

(+/-)

RNA

(+/-)

RNZ

(+/-)

X 0 0

SIP

SIP SIP SIP

SIP

SIP

SIP X 1 0

SIP+

SIP+ /SIP

SIP /SIP+

0 0 =5

SIP+ 1 0 =5

SIP+ X 1 =5 SIP+

X X >5

X X <5 SIP SIP SIP

Legend: SIP =Shifted Intermediate Product, SIP+ = Shifted Intermediate product + 1, LSB=Least Significand Bit of the SIP.

TABLE I
ROUNDING SCHEME

Based on the rounding direction, the product sign, round

digit, least significand bit of the least significand bit of SIP

and the sticky bit, the rounder selects between the shifted

intermediate product truncated to (n) digits and its incre-

mented value.

The output formulation block encodes the significand into

DPD encoding format and handles all special values (infini-

ty, Not a Number NaN, overflow and underflow), and gene-

rates the exception flags that may be signaled during the

multiplication: invalid, overflow, underflow and inexact.

The invalid operation exception is signaled when either ope-

rand is a signaling NaN or when zero and infinity are mul-

tiplied. The default handling of the invalid operation excep-

tion involves signaling the exception and producing a quiet

NaN for the result, the overflow exception is signaled when

a result’s magnitude exceeds the largest finite number. De-

fault overflow handling, as specified in IEEE Std 754-2008,

involves the selection of either the largest normal number or

canonical infinity based on the rounding direction and the

raising of the inexact exception. Under default exception

handling, the underflow exception is signaled when a result

is both tiny and inexact. The system output is in the IEEE

Std 754-2008 form.

IV. VERIFICATION AND SYNTHESIS RESULTS

The multiplier is modeled using RTL VHDL and then it

is functionally verified using FPGEN test cases supplied by

IBM [4]. Additionally, we generate [7] a large number of

random test cases. The results of these random cases are

generated using the DecNumber library that implements the

general decimal arithmetic specification in ANSI C. This

decimal arithmetic library is compliant to IEEE Std 754-

2008. The multiplier is synthesized using TSMC 0.18 µm

technology. The design is synthesized for a large number of

pipeline stages to explore latency, area, and delay tradeoffs.

This synthesis was performed using the retiming feature.

The synthesis results are given in Table II. The proposed

DFP multiplier has a low latency and a small area.Fig. 4

illustrates the relation between the 𝒂𝒓𝒆𝒂 × 𝒅𝒆𝒍𝒂𝒚 product

of our design and 𝒂𝒓𝒆𝒂 × 𝒅𝒆𝒍𝒂𝒚 product of the design

 TABLE II

 AREA AND DELAY FOR MULTIPLIER DESIGNS

Fig. 4. Area x Delay factor versus No. of pipeline stages

presented in [3] versus the number of pipelined stages.

Our combinational design shows about 17% improve-

ment in the 𝒂𝒓𝒆𝒂 × 𝒅𝒆𝒍𝒂𝒚 product over the parallel de-

cimal floating point multiplier presented in [3]. For fair

comparison, our results for area and delay are scaled to 0.11

µm technology.

For Decimal128, our decimal floating point multiplier has

a delay of 10 ns with 2.4901265 mm
2
 area. The proposed

floating point multiplier for decimal64 is hardware verified

by integrating into NIOS II processor on Altera Cyclone II

FPGA development kit. The multiplier is tested with the aid

of the NIOS II IDE supplied by Altera and a graphical user

interface (GUI) implemented in house.

V. CONCLUSION

In this paper a decimal fully parallel and pipelined float-

ing point multiplier is presented. Several enhancements are

used to improve the latency such as the use of a parallel

fixed point multiplier, the generation of the sticky bit in

parallel and the use of a fast decimal carry propagation ad-

der. The multiplier is synthesized in 0.18 µm technology

and pipelined for different numbers of stages. The multip-

lier shows very good performance with respect to delay and

area. The multiplier is hardware verified through Altera

Cyclone II FPGA testing.

 REFERENCES
[1] A. Vazquez, E. Antelo, and P. Montuschi, “A New Family of High–

 Performance Parallel Decimal Multipliers”. Proceedings of the 18th
IEEE Symposium on Computer Arithmetic, pages 195-204, June

2007.

[2] M. F. Cowlishaw, “Decimal Floating-Point: Algorithm for
Computers”, Proceedings of the 16th IEEE Symposium on Computer

Arithmetic, pages 104-111, June 2003.

[3] B. Hickmann, A. Krioukov, M. Schulte, and M. Erle, “A Parallel
 IEEE P754 Decimal Floating-Point Multiplier”.

[4] Floating point test suite, IBM Corporation;

 http://www.haifa.ibm.com/projects/verification/fpgen/ieeets.html
[5] Mark A. Erle, Michael J. Schulte and Brian J. Hickmann, “Decimal

 Floating-Point Multiplication Via Carry-Save Addition”.

[6] “IEEE Standard for Floating-Point Arithmetic” IEEE Std 754-2008,
29 August 2008 (Revision of IEEE Std 754-1985). ISBN 978-0-

7381-5753-5.
[7] SilMinds Decimal Tool, SilMinds;

 http://www.silminds.com/index.php?option=com_content&task=view

&id=10&Itemid=37

0

0.5

1

1.5

2

2.5

3

3.5

A
re

a
x

D
e

la
y

 (
 m

m
2

x
n

s)

Proposed Design Design in [3]

Hardware Delay Area

Design ns FO4 μm2 NAND2

Combinational 7.6 84.4 846848.31 84861

1 Stage 7.53 83.6 869870 87169

2 Stages 4.3 47.7 881995 88384

3 Stages 3.2 35.6 946836.5 94881

4 Stages 2.62 29.1 994081.4 99615

5 Stages 2.2 24.4 1160125 118590

6 Stages 1.94 21.5 1187318.6 118980

7 Stages 1.82 20.2 1175210.5 117766

8 Stages 1.65 18.3 1276093 127876

9 Stages 1.6 17.7 1249642 137698

10 Stages 1.52 16.8 1293553.8 146428

http://www.haifa.ibm.com/projects/verification/fpgen/ieeets.html
http://www.silminds.com/index.php?option=com_content&task=view&id=10&Itemid=37
http://www.silminds.com/index.php?option=com_content&task=view&id=10&Itemid=37
http://www.silminds.com/index.php?option=com_content&task=view&id=10&Itemid=37

