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Abstract- Decimal arithmetic is important in several commercial 

applications including financial analysis, banking, tax calcula-

tion, currency conversion, insurance, and accounting.  This paper 

presents a fully parallel Decimal64 floating point (FP) multiplier 

compliant to IEEE Std 754-2008 for floating point arithmetic.  

The proposed multiplier possesses novel methods to target low 

latency.  The proposed design is based on a previously published 

fixed point multiplier [1] that uses a novel BCD–4221 recoding 

for decimal digits to improve the area and latency of the partial 

product generation and the partial product reduction tree.  Sev-

eral enhancements are introduced to the design; the final carry 

propagation adder is implemented using a fully parallel decimal 

adder with a Kogge-Stone prefix tree, the sticky bit is generated 

in parallel to the shifter to reduce the critical path delay.  The 

design is extendable to support Decimal128 floating point multip-

lication.  The multiplier is hardware verified for functionality on 

an FPGA.   

 

I. INTRODUCTION 

 
Decimal arithmetic received an increased attention in the 

last decade because of its growing need in many commercial 

applications and database systems where the binary arithmetic 

is not sufficient.  The arithmetic operations in these applica-

tions need to be executed in decimal format.  This is because 

the inexact mapping between some decimal and binary num-

bers, such as 0.1, cannot be represented accurately using bi-

nary format in a limited precision.  This leads to an inaccuracy 

of floating point decimal arithmetic emulation by floating 

point binary arithmetic units. 

Decimal arithmetic software libraries have been developed 

to overcome the decimal to binary conversion error but they 

are about 100 to 1000 times slower than what can be imple-

mented in hardware [2].  In the near future, Decimal floating-

point (DFP) units are expected to be embedded in many pro-

cessors' cores to perform the decimal operation faster than the 

software packages and with higher accuracy.  Due to the im-

portance and the growing need of the decimal arithmetic, its 

specifications are included in the new IEEE standard for float-

ing point arithmetic (IEEE Std 754-2008) [6]. 

This paper introduces a decimal floating point multiplier 

based on radix-10 fixed point multiplier [1] that introduced an 

efficient implementation by the parallel generation of partial 

products followed by a novel carry save addition (CSA) tree to 

end the reduction of the partial products in Carry Save (CS) 

format.  This carry save addition tree uses a BCD-4221 recod-

ing for decimal digits to improve the area and latency.  In our 

proposed design, a novel decimal carry propagation adder is 

used to add the outputs of the carry save addition tree in order 

to get the intermediate product.  Since our design is for float-

ing point multiplier, there is a need to calculate additional in-

formation to correctly round the number.  The shift amount 

calculations and sticky counter calculations are executed early 

to reduce the design latency.  The novelty of the proposed 

design is that it has a low latency and low area compared to 

previous decimal multiplier designs. 

The paper is organized as follows: Section (II) contains 

background information about the decimal multiplication and 

an overview on the IEEE Std 754-2008.  Section (III) explains 

in details the proposed multiplier design and highlights the 

novelty in design.  Section (IV) contains testing and synthesis 

results emphasizing the pipelining results, followed by conclu-

sions in section (V). 

 

II. BACKGROUND 

 

Decimal multiplication performs the computation,  

 

 𝑃 = 𝐴 ×  𝐵          (1)  

 

Where A is the multiplicand, B is the multiplier, and P is the 

product.  It is assumed that A and B are each n digits hence P 

is maximally 2n digits that must be rounded in order to fit in a 

limited precision of n digits.  Several approaches to decimal 

multiplication are proposed, the simple and straight forward 

one is to iterate over the digits of the multiplier B and based 

on the value of the current digit, add the corresponding mul-

tiple of the multiplicand A to an intermediate product.  In this 

approach the multiplier multiples 2A through 9A must be gen-

erated which consumes large area and delay.  Equation 2 

represents this approach to decimal multiplication. 

            

         𝑋𝑖+1 =  𝑋𝑖 +  𝐴. 𝐵𝑖 . 10−1              (2)

  

Where 𝑋 is the partial product, 𝑋0 = 0 and 0 ≤ i ≤ n-1. 
Another approach [5] is to generate secondary multiples 

which are a reduced set of multiples and generate any other 

missing multiple by adding two multiples from this secondary 

set based on the value of the current digit of the multiplier B.  

This approach reduces the complexity of generating eight mul-
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tiples using an addition operation.  Equation 3 represents this 

approach to decimal multiplication. 

 
             𝑋𝑖+1 =  𝑋𝑖 +  𝐴. 𝐵𝑙

′ +  𝐴. 𝐵𝑙
′′  . 10−1              (3) 

 

Where 𝐴. 𝐵𝑙
′ , 𝐴. 𝐵𝑙

′′  are the secondary multiples which together 

equal the proper primary multiple.  A parallel decimal multip-

lication is proposed in [1]; this approach improves the latency 

of the decimal multiplication and satisfies the concept of pipe-

lining. 

The fixed multiplication operation consists of three main 

stages: generation of partial products, reduction of partial 

products to two operands and a final carry propagate addition.  

The proposed design is based on the parallel decimal fixed 

multiplier in [1] that recodes the BCD8421 multiplier operand 

into redundant signed digit radix-10 representation for fast and 

efficient generation of the partial products.  It presents also a 

novel BCD4221 recoding for decimal digits to improve the 

area and latency of partial products reduction tree. 

The IEEE Std 754-2008 specifies DFP formats of 64, and 

128 bits [6].  An IEEE Std 754-2008 DFP number contains a 

sign bit, an integer significand with a precision of n digits, and 

a biased exponent.  The value of a finite DFP number is: 

 

    𝐷 =  −1𝑆𝑖𝑔𝑛  ×  𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 × 10𝐸−𝐵𝑖𝑎𝑠         (4) 

 

Where, E is the biased non-negative integer exponent.  Biased 

exponents in this paper represented by E relate to IEEE Std 

754-2008’s exponents by: 

 

                  𝐸 = 𝑒 +  𝐵𝑖𝑎𝑠                     (5) 

 

Where e is the unbiased exponent defined in the IEEE Std 

754-2008.  The significand can be encoded either in binary or 

in Densely Packed Decimal (DPD), which in the IEEE Std 

754-2008 is referred to as the decimal encoding.  The expo-

nent must be in the range [Emin, Emax], after biasing.  The IEEE 

Std 754-2008 introduced representations for special values 

such as infinity and Not-a-Number (NaN). 

The IEEE Std 754-2008 defines the significand of the de-

cimal floating point number as a non-normalized significand.  

Thus, the decimal floating-point number may have redundant 

representations.  For example, the value of 320 × 10
24 

may be 

represented as 320 × 10
24

, 32 × 10
25

, or 3200 × 10
23

.  This set 

of representations for a certain decimal floating-point number 

is called a cohort.  Because of this possibility of multiple re-

presentations, IEEE Std 754-2008 defines a preferred expo-

nent for each arithmetic operation, which for multiplication is: 

 

            𝑃𝐸 =  𝐸𝑎 +  𝐸𝑏 −  𝐵𝑖𝑎𝑠            (6) 

 

Where, 𝐸𝑎  and 𝐸𝑏  are the biased exponents of the multiplicand 

and multiplier operands, respectively.  The multiplier uses the 

preferred exponent when encoding the result of a multiplica-

tion, in order not to have a loss of precision in the output re-

sult.   

The multiplier design presented in this paper uses the de-

fined Decimal64 numbers with significands encoded in the 

DPD format.  This format has 16 decimal digits of precision 

(n=16) in the significand, an unbiased exponent range of 

[−383, 384], and a bias of 398. 

 

III. PROPOSED MULTIPLIER DESIGN 

 

A. System Overview 

The multiplier reads the two operands and extracts the sign, 

exponent and significand.  The significand is decoded from a 

densely-packed decimal (DPD) encoding into Binary Coded 

Decimal (BCD).  Special values (NaN and Infinity) are de-

tected and handled separately in parallel.  The proposed mul-

tiplier contains two main paths: Significand path to generate 

the output significand of the product, and the exponent path to 

generate the output exponent of the product and the corres-

ponding flags.  The proposed design block diagram is shown 

in Fig. 1.   

The fixed point multiplier (FPM) operates once the decoded 

significands become available.  The FPM generates (n+1) par-

tial products in parallel and reduces them to two vectors (sum 

and carry) using a carry save addition (CSA) tree.  These two 

vectors are added using a novel fast decimal carry propagation 

adder based on a Kogge-Stone prefix tree.   

In parallel with FPM, the exponent of the intermediate 

product, shift amount and sticky counter are calculated in the 

Master control (MC) unit.  The calculated shift amount is used 

to align the output product to match the preferred exponent.  

The calculated sticky counter represents the number of digits 

to the right of the round digit. The MC unit produces a bit 

vector (mask) to generate the sticky bit in parallel to the shif-

ter, rather than waiting for its result.  This technique improves 

the latency significantly.  The output of the shifter and the 

sticky bit are introduced to the rounder block which is mainly 

a decimal incrementer and a multiplexer to fit the result in the 

required precision.  Finally, the output formulation selects 

either the rounded intermediate product or the special values 

based on exceptional conditions specified by the MC unit.  

The output is encoded and formulated to match the IEEE Std 

754-2008 format. 

 

B. Fixed Point Multiplier 

Fixed point multiplier consists of three main blocks.  The 

partial product generation generates multiples of multiplicand 

based on the multiplier digits.  The CSA reduction tree reduc-

es the generated partial product to two vectors (CS format) to 

be added.  The decimal carry propagation adder adds the out-

put from the CSA tree, generating an intermediate product to 

be aligned based on the shift amount generated from the MC 

and then the shifted product is rounded to fit in the required 

precision of n digits. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fixed point multiplier design is based on the highly pa-

rallel decimal fixed point multiplier presented in [1].  It uses 

the signed digit recoding technique to generate partial prod-

ucts in parallel.  This recoding transforms the multiplier digit 

set {0.  .  .  9} into the signed–digit (SD) set {−5.   .  .  5} to 

perform the selection of multiples in a similar way as modified 

Booth recoding. 

Decimal multiplicand multiples 2A, 3A, 4A and 5A are ob-

tained from a few levels of logic using recoding and wired left 

shifts.  The generation of negative multiples is performed by 

evaluating the 10’s complement of positive multiples. 

A multiple sets of the multiplicand (A) are generated, con-

currently, the multiplier (B) digits are encoded into (n+1) SD 

radix-10 digits; each recoded digit is used to generate one par-

tial product by selecting one multiple set from the generated 

sets of the multiplicand.  Fig. 2 illustrates a block diagram of 

the multiplier encoding and the multiple sets selection units. 

The generated partial products are reduced using the CSA 

tree, the main unit in the CSA tree is a 3:2 compressor which 

takes three partial products and yields two vectors sum and 

carry, the carry vector must be corrected to be suitable for 

addition with the sum vector.  To reduce the complexity of 

this correction stage, the partial products are generated in 

BCD-4221 format. 

In our proposed design for the DFP multiplier, the output 

two vectors from the CSA tree are introduced to a novel de-

cimal carry propagation adder to generate the intermediate 

product.  The proposed decimal carry propagation adder is 

illustrated in Fig. 3. 

The carry propagation is based on a Kogge-stone tree that 

aims to propagate the carry faster. The inputs of the Kogge-

Stone tree are Generate and Propagate signals.  The Generate 

signal (Gs) is raised when the sum of the corresponding digits 

in the input operands is more than 9, and the Propagate signal 

(Ps) is raised when the sum is exactly 9.   As the carry propa-

gation lies in the critical path of the decimal adder, we calcu-

late the Gs and Ps signals early in parallel while computing 

the sum and sum+1 of each corresponding digits in the input 

operands.  The sum+1 of each corresponding digits is to be 

selected if the carry from the previous digit is 1.  The digits 

are summed using a four bit binary adder followed by a cor-

rection unit to fit the output digit in the range from {0…9}.  A 

straightforward design would have waited for sum digits to 

Fig. 3. Decimal Carry Propagation Adder 
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generate the Gs and Ps signals. In our design, the two input 

operands are converted to excess3 format and are introduced 

to a few levels of logic to check if the sum of each corres-

ponding digits is greater than or equal nine to generate the Gs 

and Ps signals.  Then, the Gs and Ps signals are introduced to 

the Kogge-stone tree.  The output of the Kogge-stone tree is a 

carry vector; each bit in this vector selects the corresponding 

digit in the output sum.  The Kogge-stone tree stages in this 

design are based on the number of input operand digits not on 

the number of bits, which improves the latency and reduces 

the area of the design. 

 

C. Master Control Unit 

The exponent of the intermediate product, shift amount and 

the sticky counter are calculated in the master control unit in 

parallel with the fixed-point multiplication.  The decimal point 

should be in the middle of the intermediate product which is 

(2n) length. Thus (n) digits of the intermediate product are to 

the right of the decimal point. This increases the exponent of 

the intermediate product (EIP) by (n).  The EIP is calculated 

using (7),  

      𝐸𝐼𝑃 = 𝐸𝑎 +  𝐸𝑏 −  𝐵𝑖𝑎𝑠 + 𝑛            (7) 

 

The intermediate product result from the fixed point multip-

lier may need to be left/right shifted to achieve the preferred 

exponent or to bring the result exponent into the range.  The 

shift amount is determined based on the number of leading 

zeros in the intermediate product and the difference between 

the calculated exponent and the minimum and maximum ex-

ponent defined in the IEEE Std 754-2008. 

The product may need to be left shifted one additional digit 

after matching the preferred exponent, if a leading zero is de-

tected.  Hence, the exponent is updated.  Instead of waiting for 

the intermediate product to count its leading zeros, the latency 

of the multiplier is improved by determining the output lead-

ing zeros based on the leading zeros in the multiplicand and 

the multiplier.  The basic shift amount is calculated using (8), 

 

         𝑆𝐿𝐴 = 𝑀𝑖𝑛(𝐿𝑍𝑎 +  𝐿𝑍𝑏  , 𝑛)             (8) 

 Where SLA=Shift Left Amount, 𝐿𝑍𝑎  , 𝐿𝑍𝑏  are the leading 

zeros count in the multiplicand and multiplier respectively.    

If the product is a non-zero floating point number with 

magnitude less than the magnitude of that format’s smallest 

normal number (i.e. the result is a subnormal number), a right 

shifter is needed to bring the exponent into range even if 

some precision digits are lost.  After shifting the intermediate 

product, the least (n-2) digits in the intermediate product must 

be ORed to check if a non-zero digit exist or not, and any 

shifted digits to the right must be taken into consideration in 

sticky bit generation.  A sticky counter generated from the 

MC contains the number of digits that must be ORed to gen-

erate the sticky bit.  To improve the latency of the multiplier, 

a novel sticky bit generation unit is developed to generate the 

sticky bit in parallel with the shifter, the sticky counter is used 

for generating a bit vector of (2n) length; the vector has 1’s in 

bits corresponding to the digits that will be ORed to generate 

the sticky bit, and 0’s in the other bits.  The vector is ANDed 

with the intermediate product then the resultant bits are ORed 

together to generate the sticky bit. Sticky counter (SC) is cal-

culated early as it depends also on the leading zeros in the 

multiplier and multiplicand. 

      

      𝑆𝐶 = 𝑀𝑎𝑥(0, 𝑛 − (𝐿𝑍𝑎 + 𝐿𝑍𝑏))              (9) 

 

The sticky counter is decremented twice.  This insures that 

the round and guard digits are not included in the sticky bit 

generation. 

 

D. Rounding and output formulation 

Rounder takes (n+1) digits from the shifted intermediate 

product (SIP) and the sticky bit.  The proposed multiplier sup-

ports the five rounding directions listed in the IEEE Std 754-

2008 (Round to Nearest Ties to Even (RNE), Round to Near-

est Ties Away from Zero (RNA), Round to Positive Infinity 

(RPI), Round to negative Infinity (RNI), Round Toward Zero 

(RTZ)).  Additionally, it supports two other rounding direc-

tions listed in [3]. (Round Away from Zero (RAZ), Round to 

nearest, Ties Toward Zero (RNZ)).  Table I illustrates the 

rounding scheme used in our DFP multiplier design. 
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Based on the rounding direction, the product sign, round 

digit, least significand bit of the least significand bit of SIP 

and the sticky bit, the rounder selects between the shifted 

intermediate product truncated to (n) digits and its incre-

mented value.   

The output formulation block encodes the significand into 

DPD encoding format and handles all special values (infini-

ty, Not a Number NaN, overflow and underflow), and gene-

rates the exception flags that may be signaled during the 

multiplication: invalid, overflow, underflow and inexact. 

The invalid operation exception is signaled when either ope-

rand is a signaling NaN or when zero and infinity are mul-

tiplied.  The default handling of the invalid operation excep-

tion involves signaling the exception and producing a quiet 

NaN for the result, the overflow exception is signaled when 

a result’s magnitude exceeds the largest finite number.  De-

fault overflow handling, as specified in IEEE Std 754-2008, 

involves the selection of either the largest normal number or 

canonical infinity based on the rounding direction and the 

raising of the inexact exception.  Under default exception 

handling, the underflow exception is signaled when a result 

is both tiny and inexact.    The system output is in the IEEE 

Std 754-2008 form. 

IV. VERIFICATION AND SYNTHESIS RESULTS 

The multiplier is modeled using RTL VHDL and then it 

is functionally verified using FPGEN test cases supplied by 

IBM [4].  Additionally, we generate [7] a large number of 

random test cases.  The results of these random cases are 

generated using the DecNumber library that implements the 

general decimal arithmetic specification in ANSI C.  This 

decimal arithmetic library is compliant to IEEE Std 754-

2008.  The multiplier is synthesized using TSMC 0.18 µm 

technology. The design is synthesized for a large number of 

pipeline stages to explore latency, area, and delay tradeoffs.  

This synthesis was performed using the retiming feature.  

The synthesis results are given in Table II.  The proposed 

DFP multiplier has a low latency and a small area.Fig. 4 

illustrates the relation between the 𝒂𝒓𝒆𝒂 ×  𝒅𝒆𝒍𝒂𝒚 product 

of our design and 𝒂𝒓𝒆𝒂 ×  𝒅𝒆𝒍𝒂𝒚 product of the design  
                                                

                                                 TABLE II 

        AREA AND DELAY FOR MULTIPLIER DESIGNS 

 
Fig. 4. Area x Delay factor versus No. of pipeline stages 

 

presented in [3] versus the number of pipelined stages.    

Our combinational design shows about 17% improve-

ment in the 𝒂𝒓𝒆𝒂 ×  𝒅𝒆𝒍𝒂𝒚 product over the parallel de-

cimal floating point multiplier presented in [3].  For fair 

comparison, our results for area and delay are scaled to 0.11 

µm technology. 

For Decimal128, our decimal floating point multiplier has 

a delay of 10 ns with 2.4901265 mm
2
 area.  The proposed 

floating point multiplier for decimal64 is hardware verified 

by integrating into NIOS II processor on Altera Cyclone II 

FPGA development kit.  The multiplier is tested with the aid 

of the NIOS II IDE supplied by Altera and a graphical user 

interface (GUI) implemented in house. 

V. CONCLUSION 

In this paper a decimal fully parallel and pipelined float-

ing point multiplier is presented.  Several enhancements are 

used to improve the latency such as the use of a parallel 

fixed point multiplier, the generation of the sticky bit in 

parallel and the use of a fast decimal carry propagation ad-

der.  The multiplier is synthesized in 0.18 µm technology 

and pipelined for different numbers of stages.  The multip-

lier shows very good performance with respect to delay and 

area.  The multiplier is hardware verified through Altera 

Cyclone II FPGA testing. 
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